Abstract
Mutants in which conserved cysteines 294, 297 or 64 and 65 of the Azotobacter vinelandii hydrogenase small subunit were replaced by serines were studied. Cysteines 294 and 297 are homologous to cysteines 246 and 249 of the Desulfovibrio gigas hydrogenase, and these cysteines are ligands to the [3Fe-4S] clusters (A. Volbeda, M.-H. Charon, C. Piras, E. C. Hatchikian, M. Frey, and J. C. Fontecilla-Camps, Nature (London) 373:580-587, 1995). Cysteine 65 is homologous to cysteine 20 of the D. gigas hydrogenase, and this cysteine is a ligand to the proximal [4Fe-4S] cluster. All three mutants retained some hydrogenase activity. All three mutants studied had H2 oxidation-to-H2 evolution activity ratios with whole cells of approximately 1.5, compared with 46 for the wild type. The changes preferentially deplete H2 oxidation activity, while having less effect on evolution. The K64,65C-->S hydrogenase was partially purified and had a specific activity for the evolution reaction that was 22% that of the wild type, while the oxidation-specific activity was 2% that of the wild type. Because cysteine 65 provides a ligand to the proximal [4Fe-4S] cluster, this cluster can be altered without entirely eliminating enzyme activity. Likewise, the detection of H2 evolution and H2 oxidation activities with whole cells and membranes of the K294C-->S and K297C-->S mutants indicates that the [3Fe-4S] cluster can also be altered or possibly eliminated without entirely eliminating enzyme activity. Membranes with K294C-->S or K297C-->S hydrogenase were uninhibited by O2 in H2 oxidation and uninhibited by H2 in H2 evolution. Wild-type membranes and membranes with K64,65C-->S hydrogenase were both sensitive to these inhibitors. These data indicate that the [3Fe-4S] cluster controls the reversible inhibition of hydrogenase activity by O2 or H2.
Full Text
The Full Text of this article is available as a PDF (231.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams M. W., Mortenson L. E., Chen J. S. Hydrogenase. Biochim Biophys Acta. 1980 Dec;594(2-3):105–176. doi: 10.1016/0304-4173(80)90007-5. [DOI] [PubMed] [Google Scholar]
- Adams M. W. The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta. 1990 Nov 5;1020(2):115–145. doi: 10.1016/0005-2728(90)90044-5. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Eidsness M. K., Scott R. A., Prickril B. C., DerVartanian D. V., Legall J., Moura I., Moura J. J., Peck H. D., Jr Evidence for selenocysteine coordination to the active site nickel in the [NiFeSe]hydrogenases from Desulfovibrio baculatus. Proc Natl Acad Sci U S A. 1989 Jan;86(1):147–151. doi: 10.1073/pnas.86.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fauque G., Peck H. D., Jr, Moura J. J., Huynh B. H., Berlier Y., DerVartanian D. V., Teixeira M., Przybyla A. E., Lespinat P. A., Moura I. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol Rev. 1988 Dec;4(4):299–344. doi: 10.1111/j.1574-6968.1988.tb02748.x. [DOI] [PubMed] [Google Scholar]
- He S. H., Teixeira M., LeGall J., Patil D. S., Moura I., Moura J. J., DerVartanian D. V., Huynh B. H., Peck H. D., Jr EPR studies with 77Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. Evidence for a selenium ligand to the active site nickel. J Biol Chem. 1989 Feb 15;264(5):2678–2682. [PubMed] [Google Scholar]
- Huynh B. H., Patil D. S., Moura I., Teixeira M., Moura J. J., DerVartanian D. V., Czechowski M. H., Prickril B. C., Peck H. D., Jr, LeGall J. On the active sites of the [NiFe] hydrogenase from Desulfovibrio gigas. Mössbauer and redox-titration studies. J Biol Chem. 1987 Jan 15;262(2):795–800. [PubMed] [Google Scholar]
- Menon A. L., Stults L. W., Robson R. L., Mortenson L. E. Cloning, sequencing and characterization of the [NiFe]hydrogenase-encoding structural genes (hoxK and hoxG) from Azotobacter vinelandii. Gene. 1990 Nov 30;96(1):67–74. doi: 10.1016/0378-1119(90)90342-o. [DOI] [PubMed] [Google Scholar]
- Przybyla A. E., Robbins J., Menon N., Peck H. D., Jr Structure-function relationships among the nickel-containing hydrogenases. FEMS Microbiol Rev. 1992 Feb;8(2):109–135. doi: 10.1111/j.1574-6968.1992.tb04960.x. [DOI] [PubMed] [Google Scholar]
- Sayavedra-Soto L. A., Arp D. J. In Azotobacter vinelandii hydrogenase, substitution of serine for the cysteine residues at positions 62, 65, 294, and 297 in the small (HoxK) subunit affects H2 oxidation [corrected]. J Bacteriol. 1993 Jun;175(11):3414–3421. doi: 10.1128/jb.175.11.3414-3421.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider K., Cammack R., Schlegel H. G., Hall D. O. The iron-sulphur centres of soluble hydrogenase from Alcaligenes eutrophus. Biochim Biophys Acta. 1979 Jun 19;578(2):445–461. doi: 10.1016/0005-2795(79)90175-2. [DOI] [PubMed] [Google Scholar]
- Seefeldt L. C., Arp D. J. Purification to homogeneity of Azotobacter vinelandii hydrogenase: a nickel and iron containing alpha beta dimer. Biochimie. 1986 Jan;68(1):25–34. doi: 10.1016/s0300-9084(86)81064-1. [DOI] [PubMed] [Google Scholar]
- Sun J. H., Hyman M. R., Arp D. J. Acetylene inhibition of Azotobacter vinelandii hydrogenase: acetylene binds tightly to the large subunit. Biochemistry. 1992 Mar 31;31(12):3158–3165. doi: 10.1021/bi00127a016. [DOI] [PubMed] [Google Scholar]
- Sweet W. J., Houchins J. P., Rosen P. R., Arp D. J. Polarographic measurement of H2 in aqueous solutions. Anal Biochem. 1980 Sep 15;107(2):337–340. doi: 10.1016/0003-2697(80)90393-0. [DOI] [PubMed] [Google Scholar]
- Teixeira M., Moura I., Xavier A. V., Dervartanian D. V., Legall J., Peck H. D., Jr, Huynh B. H., Moura J. J. Desulfovibrio Gigas hydrogenase: redox properties of the nickel and iron-sulfur centers. Eur J Biochem. 1983 Feb 15;130(3):481–484. doi: 10.1111/j.1432-1033.1983.tb07175.x. [DOI] [PubMed] [Google Scholar]
- Tran-Betcke A., Warnecke U., Böcker C., Zaborosch C., Friedrich B. Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16. J Bacteriol. 1990 Jun;172(6):2920–2929. doi: 10.1128/jb.172.6.2920-2929.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volbeda A., Charon M. H., Piras C., Hatchikian E. C., Frey M., Fontecilla-Camps J. C. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature. 1995 Feb 16;373(6515):580–587. doi: 10.1038/373580a0. [DOI] [PubMed] [Google Scholar]
- Voordouw G., Menon N. K., LeGall J., Choi E. S., Peck H. D., Jr, Przybyla A. E. Analysis and comparison of nucleotide sequences encoding the genes for [NiFe] and [NiFeSe] hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus. J Bacteriol. 1989 May;171(5):2894–2899. doi: 10.1128/jb.171.5.2894-2899.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu L. F., Mandrand M. A. Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol Rev. 1993 Apr;10(3-4):243–269. doi: 10.1111/j.1574-6968.1993.tb05870.x. [DOI] [PubMed] [Google Scholar]
- van der Zwaan J. W., Albracht S. P., Fontijn R. D., Slater E. C. Monovalent nickel in hydrogenase from Chromatium vinosum. Light sensitivity and evidence for direct interaction with hydrogen. FEBS Lett. 1985 Jan 7;179(2):271–277. doi: 10.1016/0014-5793(85)80533-0. [DOI] [PubMed] [Google Scholar]