Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jul;177(14):4157–4161. doi: 10.1128/jb.177.14.4157-4161.1995

Molecular characterization of a deletion-prone region of plasmid pAE1 of Alcaligenes eutrophus H1.

W Y Chow 1, C K Wang 1, W L Lee 1, S S Kung 1, Y M Wu 1
PMCID: PMC177153  PMID: 7608094

Abstract

A 93-kb region (D region) of plasmid pAE1 of Alcaligenes eutrophus H1 has been found to have a high rate of spontaneous deletion. In this study, we constructed a restriction endonuclease map and carried out limited sequencing of an approximately 100-kb region from pAE1 which includes the D region (the deleted region) in order to detect and characterize repetitive sequences. Two types of repetitive sequences, the R1 and R2 sequences, were observed to flank the D region; within the D region are three copies of insertion element ISAE1. The R1 and R2 sequences are arranged in direct and inverted orientations, respectively. Molecular analysis of the end product of the deletion is consistent with the hypothesis that the loss of the D-region DNA is the result of recombination between two copies of the R1 sequence. The R1 sequence encodes a 415-amino-acid protein which exhibits substantial sequence similarity to the lambda integrase family of site-specific recombinases. Its genetic function remains to be determined.

Full Text

The Full Text of this article is available as a PDF (267.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Argos P., Landy A., Abremski K., Egan J. B., Haggard-Ljungquist E., Hoess R. H., Kahn M. L., Kalionis B., Narayana S. V., Pierson L. S., 3rd The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 1986 Feb;5(2):433–440. doi: 10.1002/j.1460-2075.1986.tb04229.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Colloms S. D., Sykora P., Szatmari G., Sherratt D. J. Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J Bacteriol. 1990 Dec;172(12):6973–6980. doi: 10.1128/jb.172.12.6973-6980.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dunn I. S., Blattner F. R. Charons 36 to 40: multi enzyme, high capacity, recombination deficient replacement vectors with polylinkers and polystuffers. Nucleic Acids Res. 1987 Mar 25;15(6):2677–2698. doi: 10.1093/nar/15.6.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hall R. M., Vockler C. The region of the IncN plasmid R46 coding for resistance to beta-lactam antibiotics, streptomycin/spectinomycin and sulphonamides is closely related to antibiotic resistance segments found in IncW plasmids and in Tn21-like transposons. Nucleic Acids Res. 1987 Sep 25;15(18):7491–7501. doi: 10.1093/nar/15.18.7491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Höfte M., Dong Q., Kourambas S., Krishnapillai V., Sherratt D., Mergeay M. The sss gene product, which affects pyoverdin production in Pseudomonas aeruginosa 7NSK2, is a site-specific recombinase. Mol Microbiol. 1994 Dec;14(5):1011–1020. doi: 10.1111/j.1365-2958.1994.tb01335.x. [DOI] [PubMed] [Google Scholar]
  7. Klemm P. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J. 1986 Jun;5(6):1389–1393. doi: 10.1002/j.1460-2075.1986.tb04372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kung S. S., Chen J., Chow W. Y. Molecular and genetic characterization of an Alcaligenes eutrophus insertion element. J Bacteriol. 1992 Dec;174(24):8023–8029. doi: 10.1128/jb.174.24.8023-8029.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lane D., de Feyter R., Kennedy M., Phua S. H., Semon D. D protein of miniF plasmid acts as a repressor of transcription and as a site-specific resolvase. Nucleic Acids Res. 1986 Dec 22;14(24):9713–9728. [PMC free article] [PubMed] [Google Scholar]
  10. Lovett S. T., Kolodner R. D. Nucleotide sequence of the Escherichia coli recJ chromosomal region and construction of recJ-overexpression plasmids. J Bacteriol. 1991 Jan;173(1):353–364. doi: 10.1128/jb.173.1.353-364.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mahillon J., Lereclus D. Structural and functional analysis of Tn4430: identification of an integrase-like protein involved in the co-integrate-resolution process. EMBO J. 1988 May;7(5):1515–1526. doi: 10.1002/j.1460-2075.1988.tb02971.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Murphy E., Huwyler L., de Freire Bastos M. do C. Transposon Tn554: complete nucleotide sequence and isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J. 1985 Dec 1;4(12):3357–3365. doi: 10.1002/j.1460-2075.1985.tb04089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pargellis C. A., Nunes-Düby S. E., de Vargas L. M., Landy A. Suicide recombination substrates yield covalent lambda integrase-DNA complexes and lead to identification of the active site tyrosine. J Biol Chem. 1988 Jun 5;263(16):7678–7685. [PubMed] [Google Scholar]
  14. Petes T. D., Hill C. W. Recombination between repeated genes in microorganisms. Annu Rev Genet. 1988;22:147–168. doi: 10.1146/annurev.ge.22.120188.001051. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES