Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jul;177(14):4162–4165. doi: 10.1128/jb.177.14.4162-4165.1995

Transcriptional control of the mtr efflux system of Neisseria gonorrhoeae.

K E Hagman 1, W M Shafer 1
PMCID: PMC177154  PMID: 7608095

Abstract

The capacity of Neisseria gonorrhoeae to resist structurally diverse hydrophobic agents (HAs) because of the mtr (multiple transferable resistance) efflux system was found to be regulated at the level of transcription by two distinct mechanisms. This was surmised because a deletion that removed > 90% of the coding sequence of the mtrR (multiple transferrable resistance regulator) gene or a single-base-pair deletion within a 13-bp inverted repeat sequence located in its promoter resulted in altered expression of the mtrC gene; mtrC encodes a 44-kDa membrane lipoprotein essential for the efflux of HAs. However, the single-base-pair deletion had the more significant impact on gene expression since it resulted in the loss of expression of mtrR and a threefold increase in the expression of mtrC. Hence, the mtr efflux system in gonococci is subject to both MtrR-dependent and MtrR-independent regulation, and the levels of mtrC mRNA correlate well with HA resistance levels in gonococci.

Full Text

The Full Text of this article is available as a PDF (261.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker R. F., Yanofsky C. The periodicity of RNA polymerase initiations: a new regulatory feature of transcription. Proc Natl Acad Sci U S A. 1968 May;60(1):313–320. doi: 10.1073/pnas.60.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brow M. A., Pesin R., Sutcliffe J. G. The tetracycline repressor of pSC101. Mol Biol Evol. 1985 Jan;2(1):1–12. doi: 10.1093/oxfordjournals.molbev.a040334. [DOI] [PubMed] [Google Scholar]
  3. Hagman K. E., Pan W., Spratt B. G., Balthazar J. T., Judd R. C., Shafer W. M. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology. 1995 Mar;141(Pt 3):611–622. doi: 10.1099/13500872-141-3-611. [DOI] [PubMed] [Google Scholar]
  4. Klein J. R., Henrich B., Plapp R. Molecular analysis and nucleotide sequence of the envCD operon of Escherichia coli. Mol Gen Genet. 1991 Nov;230(1-2):230–240. doi: 10.1007/BF00290673. [DOI] [PubMed] [Google Scholar]
  5. Ma D., Cook D. N., Alberti M., Pon N. G., Nikaido H., Hearst J. E. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol. 1993 Oct;175(19):6299–6313. doi: 10.1128/jb.175.19.6299-6313.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ma D., Cook D. N., Hearst J. E., Nikaido H. Efflux pumps and drug resistance in gram-negative bacteria. Trends Microbiol. 1994 Dec;2(12):489–493. doi: 10.1016/0966-842x(94)90654-8. [DOI] [PubMed] [Google Scholar]
  7. McFarland L., Mietzner T. A., Knapp J. S., Sandstrom E., Holmes K. K., Morse S. A. Gonococcal sensitivity to fecal lipids can be mediated by an Mtr-independent mechanism. J Clin Microbiol. 1983 Jul;18(1):121–127. doi: 10.1128/jcm.18.1.121-127.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Morse S. A., Lysko P. G., McFarland L., Knapp J. S., Sandstrom E., Critchlow C., Holmes K. K. Gonococcal strains from homosexual men have outer membranes with reduced permeability to hydrophobic molecules. Infect Immun. 1982 Aug;37(2):432–438. doi: 10.1128/iai.37.2.432-438.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994 Apr 15;264(5157):382–388. doi: 10.1126/science.8153625. [DOI] [PubMed] [Google Scholar]
  10. Pan W., Spratt B. G. Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol. 1994 Feb;11(4):769–775. doi: 10.1111/j.1365-2958.1994.tb00354.x. [DOI] [PubMed] [Google Scholar]
  11. Poole K., Krebes K., McNally C., Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol. 1993 Nov;175(22):7363–7372. doi: 10.1128/jb.175.22.7363-7372.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Saier M. H., Jr, Tam R., Reizer A., Reizer J. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol. 1994 Mar;11(5):841–847. doi: 10.1111/j.1365-2958.1994.tb00362.x. [DOI] [PubMed] [Google Scholar]
  13. Shafer W. M., Balthazar J. T., Hagman K. E., Morse S. A. Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. Microbiology. 1995 Apr;141(Pt 4):907–911. doi: 10.1099/13500872-141-4-907. [DOI] [PubMed] [Google Scholar]
  14. Swartzman E., Silverman M., Meighen E. A. The luxR gene product of Vibrio harveyi is a transcriptional activator of the lux promoter. J Bacteriol. 1992 Nov;174(22):7490–7493. doi: 10.1128/jb.174.22.7490-7493.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES