Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Aug;177(15):4224–4229. doi: 10.1128/jb.177.15.4224-4229.1995

Direct correlation between overproduction of guanosine 3',5'-bispyrophosphate (ppGpp) and penicillin tolerance in Escherichia coli.

D G Rodionov 1, E E Ishiguro 1
PMCID: PMC177166  PMID: 7635809

Abstract

The penicillin tolerance exhibited by amino acid-deprived Escherichia coli has been previously proposed to be a consequence of the stringent response. Evidence indicating that penicillin tolerance is directly attributable to guanosine 3',5'-bispyrophosphate (ppGpp) overproduction and not to some other effect of amino acid deprivation is now presented. Accumulation of ppGpp in the absence of amino acid deprivation was achieved by the controlled overexpression of the cloned relA gene, which encodes ppGpp synthetase I. The overproduction of ppGpp resulted in the inhibition of both peptidoglycan and phospholipid synthesis and in penicillin tolerance. The minimum concentration of ppGpp required to establish these phenomena was determined to be 870 pmol per mg (dry weight) of cells. This represented about 70% of the maximum level of ppGpp accumulated during the stringent response. Penicillin tolerance and the inhibition of peptidoglycan synthesis were both suppressed when ppGpp accumulation was prevented by treatment with chloramphenicol, an inhibitor of ppGpp synthetase I activation. Glycerol-3-phosphate acyltransferase, the product of plsB, was recently identified as the main site of ppGpp inhibition in phospholipid synthesis (R. J. Health, S. Jackowski, and C. O. Rock, J. Biol. Chem. 269:26584-26590, 1994). The overexpression of the cloned plsB gene reversed the penicillin tolerance conferred by ppGpp accumulation. This result supports previous observations indicating that the membrane-associated events in peptidoglycan metabolism were dependent on ongoing phospholipid synthesis. Interestingly, treatment with beta-lactam antibiotics by itself induced ppGpp accumulation, but the maximum levels attained were insufficient to confer penicillin tolerance.

Full Text

The Full Text of this article is available as a PDF (252.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bell R. M. Mutants of Escherichia coli defective in membrane phospholipid synthesis: macromolecular synthesis in an sn-glycerol 3-phosphate acyltransferase Km mutant. J Bacteriol. 1974 Mar;117(3):1065–1076. doi: 10.1128/jb.117.3.1065-1076.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bouloc P., Vinella D., D'Ari R. Leucine and serine induce mecillinam resistance in Escherichia coli. Mol Gen Genet. 1992 Nov;235(2-3):242–246. doi: 10.1007/BF00279366. [DOI] [PubMed] [Google Scholar]
  4. Cortay J. C., Cozzone A. J. Accumulation of guanosine tetraphosphate induced by polymixin and gramicidin in Escherichia coli. Biochim Biophys Acta. 1983 Feb 22;755(3):467–473. doi: 10.1016/0304-4165(83)90251-9. [DOI] [PubMed] [Google Scholar]
  5. Goodell W., Tomasz A. Alteration of Escherichia coli murein during amino acid starvation. J Bacteriol. 1980 Dec;144(3):1009–1016. doi: 10.1128/jb.144.3.1009-1016.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heath R. J., Jackowski S., Rock C. O. Guanosine tetraphosphate inhibition of fatty acid and phospholipid synthesis in Escherichia coli is relieved by overexpression of glycerol-3-phosphate acyltransferase (plsB). J Biol Chem. 1994 Oct 21;269(42):26584–26590. [PubMed] [Google Scholar]
  7. Hernandez V. J., Bremer H. Escherichia coli ppGpp synthetase II activity requires spoT. J Biol Chem. 1991 Mar 25;266(9):5991–5999. [PubMed] [Google Scholar]
  8. Höltje J. V., Tuomanen E. I. The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infections in vivo. J Gen Microbiol. 1991 Mar;137(3):441–454. doi: 10.1099/00221287-137-3-441. [DOI] [PubMed] [Google Scholar]
  9. Ishiguro E. E., Ramey W. D. Stringent control of peptidoglycan biosynthesis in Escherichia coli K-12. J Bacteriol. 1976 Sep;127(3):1119–1126. doi: 10.1128/jb.127.3.1119-1126.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Joseleau-Petit D., Thévenet D., D'Ari R. ppGpp concentration, growth without PBP2 activity, and growth-rate control in Escherichia coli. Mol Microbiol. 1994 Sep;13(5):911–917. doi: 10.1111/j.1365-2958.1994.tb00482.x. [DOI] [PubMed] [Google Scholar]
  11. Kusser W., Ishiguro E. E. Involvement of the relA gene in the autolysis of Escherichia coli induced by inhibitors of peptidoglycan biosynthesis. J Bacteriol. 1985 Nov;164(2):861–865. doi: 10.1128/jb.164.2.861-865.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leduc M., van Heijenoort J. Autolysis of Escherichia coli. J Bacteriol. 1980 Apr;142(1):52–59. doi: 10.1128/jb.142.1.52-59.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pisabarro A. G., De Pedro M. A., Ishiguro E. E. Dissociation of the ampicillin-induced lysis of amino acid-deprived Escherichia coli into two stages. J Bacteriol. 1990 Apr;172(4):2187–2190. doi: 10.1128/jb.172.4.2187-2190.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  15. Ramey W. D., Ishiguro E. E. Site of inhibition of peptidoglycan biosynthesis during the stringent response in Escherichia coli. J Bacteriol. 1978 Jul;135(1):71–77. doi: 10.1128/jb.135.1.71-77.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rodionov D. G., Pisabarro A. G., de Pedro M. A., Kusser W., Ishiguro E. E. Beta-lactam-induced bacteriolysis of amino acid-deprived Escherichia coli is dependent on phospholipid synthesis. J Bacteriol. 1995 Feb;177(4):992–997. doi: 10.1128/jb.177.4.992-997.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sarubbi E., Rudd K. E., Cashel M. Basal ppGpp level adjustment shown by new spoT mutants affect steady state growth rates and rrnA ribosomal promoter regulation in Escherichia coli. Mol Gen Genet. 1988 Aug;213(2-3):214–222. doi: 10.1007/BF00339584. [DOI] [PubMed] [Google Scholar]
  18. Sokawa Y., Nakao E., Kaziro Y. On the nature of the control by RC gene in e. coli: amino acid-dependent control of lipid synthesis. Biochem Biophys Res Commun. 1968 Oct 10;33(1):108–112. doi: 10.1016/0006-291x(68)90263-5. [DOI] [PubMed] [Google Scholar]
  19. Spratt B. G., Pardee A. B. Penicillin-binding proteins and cell shape in E. coli. Nature. 1975 Apr 10;254(5500):516–517. doi: 10.1038/254516a0. [DOI] [PubMed] [Google Scholar]
  20. Svitil A. L., Cashel M., Zyskind J. W. Guanosine tetraphosphate inhibits protein synthesis in vivo. A possible protective mechanism for starvation stress in Escherichia coli. J Biol Chem. 1993 Feb 5;268(4):2307–2311. [PubMed] [Google Scholar]
  21. Vinella D., D'Ari R., Jaffé A., Bouloc P. Penicillin binding protein 2 is dispensable in Escherichia coli when ppGpp synthesis is induced. EMBO J. 1992 Apr;11(4):1493–1501. doi: 10.1002/j.1460-2075.1992.tb05194.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vinella D., D'Ari R. Thermoinducible filamentation in Escherichia coli due to an altered RNA polymerase beta subunit is suppressed by high levels of ppGpp. J Bacteriol. 1994 Feb;176(4):966–972. doi: 10.1128/jb.176.4.966-972.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vinella D., Joseleau-Petit D., Thévenet D., Bouloc P., D'Ari R. Penicillin-binding protein 2 inactivation in Escherichia coli results in cell division inhibition, which is relieved by FtsZ overexpression. J Bacteriol. 1993 Oct;175(20):6704–6710. doi: 10.1128/jb.175.20.6704-6710.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Xiao H., Kalman M., Ikehara K., Zemel S., Glaser G., Cashel M. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem. 1991 Mar 25;266(9):5980–5990. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES