Abstract
We observed a large efflux of nonvolatile radioactivity from Bacillus subtilis in response to the addition of 31 mM butyrate or the withdrawal of 0.1 M aspartate in a flow assay. The major nonvolatile components effluxed were methionine, proline, histidine, and lysine. In studies of the release of volatile radioactivity in chemotaxis by B. subtilis cells that had been labeled with [3H]methionine, the breakdown of methionine to methanethiol can contribute substantially to the volatile radioactivity in fractions following addition of 0.1 M aspartate. However, methanol was confirmed to be released after aspartate addition and, in lesser quantities, after aspartate withdrawal. Methanol and methanethiol were positively identified by derivitization with 3,5-dinitro-benzoylchloride. Amino acid efflux but not methanol release was observed in response to 0.1 M aspartate stimulation of a cheR mutant of B. subtilis that lacks the chemotaxis methylesterase. The amino acid efflux could be reproduced by withdrawal of 0.1 M NaCl, 0.2 M sucrose, or 0.2 M xylitol and is probably the result of changes in osmolarity. Chemotaxis to 10 mM alanine or 10 mM proline resulted in methanol release but not efflux of amino acids. In behavioral studies, B. subtilis tumbled for 16 to 18 s in response to a 200 mosM upshift and for 14 s after a 20 mosM downshift in osmolarity when the bacteria were in perfusion buffer (40 mosM). The pattern of methanol release was similar to that observed in chemotaxis. This is consistent with osmotaxis in B. subtilis away from an increase or decrease in the osmolarity of the incubation medium. The release of methanol suggests that osmotaxis is correlated with methylation of a methyl-accepting chemotaxis protein.
Full Text
The Full Text of this article is available as a PDF (344.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahlgren J. A., Ordal G. W. Methyl esterification of glutamic acid residues of methyl-accepting chemotaxis proteins in Bacillus subtilis. Biochem J. 1983 Sep 1;213(3):759–763. doi: 10.1042/bj2130759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alam M., Lebert M., Oesterhelt D., Hazelbauer G. L. Methyl-accepting taxis proteins in Halobacterium halobium. EMBO J. 1989 Feb;8(2):631–639. doi: 10.1002/j.1460-2075.1989.tb03418.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berrier C., Coulombe A., Szabo I., Zoratti M., Ghazi A. Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur J Biochem. 1992 Jun 1;206(2):559–565. doi: 10.1111/j.1432-1033.1992.tb16960.x. [DOI] [PubMed] [Google Scholar]
- Boch J., Kempf B., Bremer E. Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol. 1994 Sep;176(17):5364–5371. doi: 10.1128/jb.176.17.5364-5371.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourret R. B., Borkovich K. A., Simon M. I. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu Rev Biochem. 1991;60:401–441. doi: 10.1146/annurev.bi.60.070191.002153. [DOI] [PubMed] [Google Scholar]
- Carpenter P. B., Hanlon D. W., Kirsch M. L., Ordal G. W. Novel aspects of chemotactic sensory transduction in Bacillus subtilis. Res Microbiol. 1994 Jun-Aug;145(5-6):413–419. doi: 10.1016/0923-2508(94)90089-2. [DOI] [PubMed] [Google Scholar]
- Chelsky D., Gutterson N. I., Koshland D. E., Jr A diffusion assay for detection and quantitation of methyl-esterified proteins on polyacrylamide gels. Anal Biochem. 1984 Aug 15;141(1):143–148. doi: 10.1016/0003-2697(84)90437-8. [DOI] [PubMed] [Google Scholar]
- Goldman D. J., Ordal G. W. Sensory adaptation and deadaptation by Bacillus subtilis. J Bacteriol. 1981 Jul;147(1):267–270. doi: 10.1128/jb.147.1.267-270.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman D. J., Worobec S. W., Siegel R. B., Hecker R. V., Ordal G. W. Chemotaxis in Bacillus subtilis: effects of attractants on the level of methylation of methyl-accepting chemotaxis proteins and the role of demethylation in the adaptation process. Biochemistry. 1982 Mar 2;21(5):915–920. doi: 10.1021/bi00534a016. [DOI] [PubMed] [Google Scholar]
- Hanlon D. W., Carpenter P. B., Ordal G. W. Influence of attractants and repellents on methyl group turnover on methyl-accepting chemotaxis proteins of Bacillus subtilis and role of CheW. J Bacteriol. 1992 Jul;174(13):4218–4222. doi: 10.1128/jb.174.13.4218-4222.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kehry M. R., Doak T. G., Dahlquist F. W. Stimulus-induced changes in methylesterase activity during chemotaxis in Escherichia coli. J Biol Chem. 1984 Oct 10;259(19):11828–11835. [PubMed] [Google Scholar]
- Krämer R. Systems and mechanisms of amino acid uptake and excretion in prokaryotes. Arch Microbiol. 1994;162(1-2):1–13. doi: 10.1007/BF00264366. [DOI] [PubMed] [Google Scholar]
- Li C., Adler J. Escherichia coli shows two types of behavioral responses to osmotic upshift. J Bacteriol. 1993 May;175(9):2564–2567. doi: 10.1128/jb.175.9.2564-2567.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li C., Boileau A. J., Kung C., Adler J. Osmotaxis in Escherichia coli. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9451–9455. doi: 10.1073/pnas.85.24.9451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niwano M., Taylor B. L. Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates. Proc Natl Acad Sci U S A. 1982 Jan;79(1):11–15. doi: 10.1073/pnas.79.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parkinson J. S. Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis. J Bacteriol. 1978 Jul;135(1):45–53. doi: 10.1128/jb.135.1.45-53.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perroud B., Le Rudulier D. Glycine betaine transport in Escherichia coli: osmotic modulation. J Bacteriol. 1985 Jan;161(1):393–401. doi: 10.1128/jb.161.1.393-401.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schleyer M., Schmid R., Bakker E. P. Transient, specific and extremely rapid release of osmolytes from growing cells of Escherichia coli K-12 exposed to hypoosmotic shock. Arch Microbiol. 1993;160(6):424–431. doi: 10.1007/BF00245302. [DOI] [PubMed] [Google Scholar]
- Stock J. B., Koshland D. E., Jr A protein methylesterase involved in bacterial sensing. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3659–3663. doi: 10.1073/pnas.75.8.3659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strøm A. R., Kaasen I. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol. 1993 Apr;8(2):205–210. doi: 10.1111/j.1365-2958.1993.tb01564.x. [DOI] [PubMed] [Google Scholar]
- Thoelke M. S., Bedale W. A., Nettleton D. O., Ordal G. W. Evidence for an intermediate methyl-acceptor for chemotaxis in Bacillus subtilis. J Biol Chem. 1987 Feb 25;262(6):2811–2816. [PubMed] [Google Scholar]
- Thoelke M. S., Kirby J. R., Ordal G. W. Novel methyl transfer during chemotaxis in Bacillus subtilis. Biochemistry. 1989 Jun 27;28(13):5585–5589. doi: 10.1021/bi00439a037. [DOI] [PubMed] [Google Scholar]
- Thoelke M. S., Parker H. M., Ordal E. A., Ordal G. W. Rapid attractant-induced changes in methylation of methyl-accepting chemotaxis proteins in Bacillus subtilis. Biochemistry. 1988 Nov 1;27(22):8453–8457. doi: 10.1021/bi00422a024. [DOI] [PubMed] [Google Scholar]
- Toews M. L., Adler J. Methanol formation in vivo from methylated chemotaxis proteins in Escherichia coli. J Biol Chem. 1979 Mar 25;254(6):1761–1764. [PubMed] [Google Scholar]
- Tsapis A., Kepes A. Transient breakdown of the permeability barrier of the membrane of Escherichia coli upon hypoosmotic shock. Biochim Biophys Acta. 1977 Aug 15;469(1):1–12. doi: 10.1016/0005-2736(77)90320-0. [DOI] [PubMed] [Google Scholar]
- Ullah A. H., Ordal G. W. In vivo and in vitro chemotactic methylation in Bacillus subtilis. J Bacteriol. 1981 Feb;145(2):958–965. doi: 10.1128/jb.145.2.958-965.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Der Werf P., Koshland D. E., Jr Identification of a gamma-glutamyl methyl ester in bacterial membrane protein involved in chemotaxis. J Biol Chem. 1977 Apr 25;252(8):2793–2795. [PubMed] [Google Scholar]
- Whatmore A. M., Chudek J. A., Reed R. H. The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol. 1990 Dec;136(12):2527–2535. doi: 10.1099/00221287-136-12-2527. [DOI] [PubMed] [Google Scholar]
- Wong L. S., Johnson M. S., Zhulin I. B., Taylor B. L. Role of methylation in aerotaxis in Bacillus subtilis. J Bacteriol. 1995 Jul;177(14):3985–3991. doi: 10.1128/jb.177.14.3985-3991.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]