Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Aug;177(15):4372–4376. doi: 10.1128/jb.177.15.4372-4376.1995

A consensus promoter sequence for Caulobacter crescentus genes involved in biosynthetic and housekeeping functions.

J Malakooti 1, S P Wang 1, B Ely 1
PMCID: PMC177186  PMID: 7543475

Abstract

Caulobacter crescentus differentiates prior to each cell division to form two different daughter cells: a monoflagellated swarmer cell and a nonmotile stalked cell. Thus, one might expect that developmentally expressed genes would be regulated by mechanisms different from those used to regulate the expression of the biosynthetic genes. To determine a consensus promoter sequence for genes involved in biosynthetic or housekeeping functions, DNA fragments containing the regulatory regions of the ilvD, ilvR, cysC, pleC, and fdxA genes were cloned. S1 nuclease protection mapping and primer extension techniques were used to identify the transcription initiation sites. Comparison of the regulatory regions of these genes with those of the published sequences of the ilvBN, rrnA, trpFBA, dnaA, dnaK, hemE, and rsaA genes has resulted in the identification of a putative promoter consensus sequence. The -35 region contains the sequence TTGACGS, which is similar to the Escherichia coli -35 region, while the -10 region, GCTANAWC, has a more balanced GC content than the corresponding region in E. coli. Oligonucleotide-directed site-specific mutagenesis of both the ilvBN and pleC promoters indicates that mutations that make a promoter more like the consensus result in increased promoter activity, while mutations decreasing similarity to the consensus result in decreased promoter activity.

Full Text

The Full Text of this article is available as a PDF (602.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amemiya K. Conserved sequence elements upstream and downstream from the transcription initiation site of the Caulobacter crescentus rrnA gene cluster. J Mol Biol. 1989 Nov 20;210(2):245–254. doi: 10.1016/0022-2836(89)90327-6. [DOI] [PubMed] [Google Scholar]
  2. Barrett J. T., Croft R. H., Ferber D. M., Gerardot C. J., Schoenlein P. V., Ely B. Genetic mapping with Tn5-derived auxotrophs of Caulobacter crescentus. J Bacteriol. 1982 Aug;151(2):888–898. doi: 10.1128/jb.151.2.888-898.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brun Y. V., Shapiro L. A temporally controlled sigma-factor is required for polar morphogenesis and normal cell division in Caulobacter. Genes Dev. 1992 Dec;6(12A):2395–2408. doi: 10.1101/gad.6.12a.2395. [DOI] [PubMed] [Google Scholar]
  4. Dingwall A., Gober J. W., Shapiro L. Identification of a Caulobacter basal body structural gene and a cis-acting site required for activation of transcription. J Bacteriol. 1990 Oct;172(10):6066–6076. doi: 10.1128/jb.172.10.6066-6076.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dingwall A., Zhuang W. Y., Quon K., Shapiro L. Expression of an early gene in the flagellar regulatory hierarchy is sensitive to an interruption in DNA replication. J Bacteriol. 1992 Mar;174(6):1760–1768. doi: 10.1128/jb.174.6.1760-1768.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ehrlich S. D. DNA cloning in Bacillus subtilis. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1433–1436. doi: 10.1073/pnas.75.3.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fisher J. A., Smit J., Agabian N. Transcriptional analysis of the major surface array gene of Caulobacter crescentus. J Bacteriol. 1988 Oct;170(10):4706–4713. doi: 10.1128/jb.170.10.4706-4713.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilchrist A., Fisher J. A., Smit J. Nucleotide sequence analysis of the gene encoding the Caulobacter crescentus paracrystalline surface layer protein. Can J Microbiol. 1992 Mar;38(3):193–202. doi: 10.1139/m92-033. [DOI] [PubMed] [Google Scholar]
  9. Gober J. W., Shapiro L. A developmentally regulated Caulobacter flagellar promoter is activated by 3' enhancer and IHF binding elements. Mol Biol Cell. 1992 Aug;3(8):913–926. doi: 10.1091/mbc.3.8.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gomes S. L., Gober J. W., Shapiro L. Expression of the Caulobacter heat shock gene dnaK is developmentally controlled during growth at normal temperatures. J Bacteriol. 1990 Jun;172(6):3051–3059. doi: 10.1128/jb.172.6.3051-3059.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. doi: 10.1093/nar/11.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henikoff S., Haughn G. W., Calvo J. M., Wallace J. C. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6602–6606. doi: 10.1073/pnas.85.18.6602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson R. C., Ely B. Isolation of spontaneously derived mutants of Caulobacter crescentus. Genetics. 1977 May;86(1):25–32. doi: 10.1093/genetics/86.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  15. Malakooti J., Ely B. Identification and characterization of the ilvR gene encoding a LysR-type regulator of Caulobacter crescentus. J Bacteriol. 1994 Mar;176(5):1275–1281. doi: 10.1128/jb.176.5.1275-1281.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mullin D. A., Newton A. Ntr-like promoters and upstream regulatory sequence ftr are required for transcription of a developmentally regulated Caulobacter crescentus flagellar gene. J Bacteriol. 1989 Jun;171(6):3218–3227. doi: 10.1128/jb.171.6.3218-3227.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mullin D., Minnich S., Chen L. S., Newton A. A set of positively regulated flagellar gene promoters in Caulobacter crescentus with sequence homology to the nif gene promoters of Klebsiella pneumoniae. J Mol Biol. 1987 Jun 20;195(4):939–943. doi: 10.1016/0022-2836(87)90497-9. [DOI] [PubMed] [Google Scholar]
  18. Newton A., Ohta N. Regulation of the cell division cycle and differentiation in bacteria. Annu Rev Microbiol. 1990;44:689–719. doi: 10.1146/annurev.mi.44.100190.003353. [DOI] [PubMed] [Google Scholar]
  19. Ninfa A. J., Mullin D. A., Ramakrishnan G., Newton A. Escherichia coli sigma 54 RNA polymerase recognizes Caulobacter crescentus flbG and flaN flagellar gene promoters in vitro. J Bacteriol. 1989 Jan;171(1):383–391. doi: 10.1128/jb.171.1.383-391.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ratzkin B., Carbon J. Functional expression of cloned yeast DNA in Escherichia coli. Proc Natl Acad Sci U S A. 1977 Feb;74(2):487–491. doi: 10.1073/pnas.74.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ross C. M., Winkler M. E. Structure of the Caulobacter crescentus trpFBA operon. J Bacteriol. 1988 Feb;170(2):757–768. doi: 10.1128/jb.170.2.757-768.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schoenlein P. V., Gallman L. M., Ely B. Use of transmissible plasmids as cloning vectors in Caulobacter crescentus. Gene. 1988 Oct 30;70(2):321–329. doi: 10.1016/0378-1119(88)90204-1. [DOI] [PubMed] [Google Scholar]
  23. Shapiro L. Protein localization and asymmetry in the bacterial cell. Cell. 1993 Jun 4;73(5):841–855. doi: 10.1016/0092-8674(93)90266-s. [DOI] [PubMed] [Google Scholar]
  24. Tarleton J. C., Ely B. Isolation and characterization of ilvA, ilvBN, and ilvD mutants of Caulobacter crescentus. J Bacteriol. 1991 Feb;173(3):1259–1267. doi: 10.1128/jb.173.3.1259-1267.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tarleton J. C., Malakooti J., Ely B. Regulation of Caulobacter crescentus ilvBN gene expression. J Bacteriol. 1994 Jun;176(12):3765–3774. doi: 10.1128/jb.176.12.3765-3774.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Van Way S. M., Newton A., Mullin A. H., Mullin D. A. Identification of the promoter and a negative regulatory element, ftr4, that is needed for cell cycle timing of fliF operon expression in Caulobacter crescentus. J Bacteriol. 1993 Jan;175(2):367–376. doi: 10.1128/jb.175.2.367-376.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang S. P., Kang P. J., Chen Y. P., Ely B. Synthesis of the Caulobacter ferredoxin protein, FdxA, is cell cycle controlled. J Bacteriol. 1995 May;177(10):2901–2907. doi: 10.1128/jb.177.10.2901-2907.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang S. P., Sharma P. L., Schoenlein P. V., Ely B. A histidine protein kinase is involved in polar organelle development in Caulobacter crescentus. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):630–634. doi: 10.1073/pnas.90.2.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Winkler M. E., Schoenlein P. V., Ross C. M., Barrett J. T., Ely B. Genetic and physical analyses of Caulobacter crescentus trp genes. J Bacteriol. 1984 Oct;160(1):279–287. doi: 10.1128/jb.160.1.279-287.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yu J., Shapiro L. Early Caulobacter crescentus genes fliL and fliM are required for flagellar gene expression and normal cell division. J Bacteriol. 1992 May;174(10):3327–3338. doi: 10.1128/jb.174.10.3327-3338.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zweiger G., Shapiro L. Expression of Caulobacter dnaA as a function of the cell cycle. J Bacteriol. 1994 Jan;176(2):401–408. doi: 10.1128/jb.176.2.401-408.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES