Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Aug;177(15):4517–4519. doi: 10.1128/jb.177.15.4517-4519.1995

Different internal metabolites trigger the induction of glycolytic gene expression in Saccharomyces cerevisiae.

S Müller 1, E Boles 1, M May 1, F K Zimmermann 1
PMCID: PMC177205  PMID: 7635834

Abstract

In the yeast Saccharomyces cerevisiae, the sugar-induced expression of various genes coding for glycolytic enzymes is triggered by increases in the concentrations of different internal metabolites. Here, we show that the induction of the glycolytic isoenzyme enolase 2 is strictly dependent on the abilities of different mutant strains to increase the level of glucose-6-phosphate after the addition of sugars. In contrast, the induction of alcohol dehydrogenase I is dependent on increasing concentrations of metabolites in the late stages of glycolysis.

Full Text

The Full Text of this article is available as a PDF (201.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boles E., Heinisch J., Zimmermann F. K. Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae. Yeast. 1993 Jul;9(7):761–770. doi: 10.1002/yea.320090710. [DOI] [PubMed] [Google Scholar]
  2. Boles E., Lehnert W., Zimmermann F. K. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. Eur J Biochem. 1993 Oct 1;217(1):469–477. doi: 10.1111/j.1432-1033.1993.tb18266.x. [DOI] [PubMed] [Google Scholar]
  3. Boles E., Zimmermann F. K. Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolites. Arch Microbiol. 1993;160(4):324–328. doi: 10.1007/BF00292085. [DOI] [PubMed] [Google Scholar]
  4. Boles E., Zimmermann F. K. Saccharomyces cerevisiae phosphoglucose isomerase and fructose bisphosphate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster. Curr Genet. 1993 Mar;23(3):187–191. doi: 10.1007/BF00351494. [DOI] [PubMed] [Google Scholar]
  5. Cohen R., Holland J. P., Yokoi T., Holland M. J. Identification of a regulatory region that mediates glucose-dependent induction of the Saccharomyces cerevisiae enolase gene ENO2. Mol Cell Biol. 1986 Jul;6(7):2287–2297. doi: 10.1128/mcb.6.7.2287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen R., Yokoi T., Holland J. P., Pepper A. E., Holland M. J. Transcription of the constitutively expressed yeast enolase gene ENO1 is mediated by positive and negative cis-acting regulatory sequences. Mol Cell Biol. 1987 Aug;7(8):2753–2761. doi: 10.1128/mcb.7.8.2753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Denis C. L., Ferguson J., Young E. T. mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source. J Biol Chem. 1983 Jan 25;258(2):1165–1171. [PubMed] [Google Scholar]
  8. Maitra P. K., Lobo Z. A kinetic study of glycolytic enzyme synthesis in yeast. J Biol Chem. 1971 Jan 25;246(2):475–488. [PubMed] [Google Scholar]
  9. Maitra P. K., Lobo Z. Control of glycolytic enzyme synthesis in yeast by products of the hexokinase reaction. J Biol Chem. 1971 Jan 25;246(2):489–499. [PubMed] [Google Scholar]
  10. Myers A. M., Tzagoloff A., Kinney D. M., Lusty C. J. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene. 1986;45(3):299–310. doi: 10.1016/0378-1119(86)90028-4. [DOI] [PubMed] [Google Scholar]
  11. Rose M., Albig W., Entian K. D. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII. Eur J Biochem. 1991 Aug 1;199(3):511–518. doi: 10.1111/j.1432-1033.1991.tb16149.x. [DOI] [PubMed] [Google Scholar]
  12. Rose M., Botstein D. Construction and use of gene fusions to lacZ (beta-galactosidase) that are expressed in yeast. Methods Enzymol. 1983;101:167–180. doi: 10.1016/0076-6879(83)01012-5. [DOI] [PubMed] [Google Scholar]
  13. Schaaff-Gerstenschläger I., Schindwolf T., Lehnert W., Rose M., Zimmermann F. K. Sequence and functional analysis of a 7.2 kb fragment of Saccharomyces cerevisiae chromosome II including GAL7 and GAL10 and a new essential open reading frame. Yeast. 1995 Jan;11(1):79–83. doi: 10.1002/yea.320110110. [DOI] [PubMed] [Google Scholar]
  14. Smith D. J., Proudfoot A., Friedli L., Klig L. S., Paravicini G., Payton M. A. PMI40, an intron-containing gene required for early steps in yeast mannosylation. Mol Cell Biol. 1992 Jul;12(7):2924–2930. doi: 10.1128/mcb.12.7.2924. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES