Abstract
The exact function of the pufX gene product of Rhodobacter capsulatus is uncertain, but deletion of the pufX gene renders cells incapable of phototrophic growth on a minimal medium, and photosynthetic electron transfer is impaired in vitro. However, suppressor mutants that are able to grow phototropically are readily isolated. Two such suppressor mutants were characterized as to their phototrophic growth properties, their fluorescence at different incident light intensities, the integrity of their chromatophores, and their abilities to generate a transmembrane potential. We found that the photosynthetic apparatus in the suppressor mutants was less stable than that of the pseudo-wild-type and primary mutant strains and that the suppressor mutants used light energy less efficiently than the pseudo-wild-type strain. Therefore, the suppressor strains are more precisely designated partial suppressor mutants. The locations and sequences of the suppressor mutations were determined, and both were found to change the second codon of the pufA gene. It is hypothesized that the serine residue specified by this codon is important in interactions between the B870 alpha protein and other membrane-bound polypeptides and that suppressor mutations at this position partially compensate for loss of the PufX protein. A model is proposed for the function of the PufX protein.
Full Text
The Full Text of this article is available as a PDF (669.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams C. W., Forrest M. E., Cohen S. N., Beatty J. T. Structural and functional analysis of transcriptional control of the Rhodobacter capsulatus puf operon. J Bacteriol. 1989 Jan;171(1):473–482. doi: 10.1128/jb.171.1.473-482.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barz W. P., Oesterhelt D. Photosynthetic deficiency of a pufX deletion mutant of Rhodobacter sphaeroides is suppressed by point mutations in the light-harvesting complex genes pufB or pufA. Biochemistry. 1994 Aug 16;33(32):9741–9752. doi: 10.1021/bi00198a045. [DOI] [PubMed] [Google Scholar]
- Bashford C. L., Chance B., Prince R. C. Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria. Biochim Biophys Acta. 1979 Jan 11;545(1):46–57. doi: 10.1016/0005-2728(79)90112-9. [DOI] [PubMed] [Google Scholar]
- Chen C. Y., Beatty J. T., Cohen S. N., Belasco J. G. An intercistronic stem-loop structure functions as an mRNA decay terminator necessary but insufficient for puf mRNA stability. Cell. 1988 Feb 26;52(4):609–619. doi: 10.1016/0092-8674(88)90473-4. [DOI] [PubMed] [Google Scholar]
- Davidson E., Prince R. C., Haith C. E., Daldal F. The cytochrome bc1 complex of Rhodobacter sphaeroides can restore cytochrome c2-independent photosynthetic growth to a Rhodobacter capsulatus mutant lacking cytochrome bc1. J Bacteriol. 1989 Nov;171(11):6059–6068. doi: 10.1128/jb.171.11.6059-6068.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dutton P. L., Petty K. M., Bonner H. S., Morse S. D. Cytochrome c2 and reaction center of Rhodospeudomonas spheroides Ga. membranes. Extinction coefficients, content, half-reduction potentials, kinetics and electric field alterations. Biochim Biophys Acta. 1975 Jun 17;387(3):536–556. doi: 10.1016/0005-2728(75)90092-4. [DOI] [PubMed] [Google Scholar]
- Farchaus J. W., Barz W. P., Grünberg H., Oesterhelt D. Studies on the expression of the pufX polypeptide and its requirement for photoheterotrophic growth in Rhodobacter sphaeroides. EMBO J. 1992 Aug;11(8):2779–2788. doi: 10.1002/j.1460-2075.1992.tb05345.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glaser E. G., Crofts A. R. A new electrogenic step in the ubiquinol:cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1984 Aug 31;766(2):322–333. doi: 10.1016/0005-2728(84)90248-2. [DOI] [PubMed] [Google Scholar]
- Jackson J. B., Crofts A. R. The high energy state in chromatophores from Rhodopseudomonas spheroides. FEBS Lett. 1969 Aug;4(3):185–189. doi: 10.1016/0014-5793(69)80230-9. [DOI] [PubMed] [Google Scholar]
- Jackson J. B., Dutton P. L. The kinetic and redox potentiometric resolution of the carotenoid shifts in Rhodopseudomonas spheroides chromatophores: their relationship to electric field alterations in electron transport and energy coupling. Biochim Biophys Acta. 1973 Oct 19;325(1):102–113. doi: 10.1016/0005-2728(73)90155-2. [DOI] [PubMed] [Google Scholar]
- Jenney F. E., Jr, Daldal F. A novel membrane-associated c-type cytochrome, cyt cy, can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. EMBO J. 1993 Apr;12(4):1283–1292. doi: 10.1002/j.1460-2075.1993.tb05773.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karrasch S., Bullough P. A., Ghosh R. The 8.5 A projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J. 1995 Feb 15;14(4):631–638. doi: 10.1002/j.1460-2075.1995.tb07041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lilburn T. G., Haith C. E., Prince R. C., Beatty J. T. Pleiotropic effects of pufX gene deletion on the structure and function of the photosynthetic apparatus of Rhodobacter capsulatus. Biochim Biophys Acta. 1992 May 20;1100(2):160–170. doi: 10.1016/0005-2728(92)90077-f. [DOI] [PubMed] [Google Scholar]
- Mathai J. C., Sauna Z. E., John O., Sitaramam V. Rate-limiting step in electron transport. Osmotically sensitive diffusion of quinones through voids in the bilayer. J Biol Chem. 1993 Jul 25;268(21):15442–15454. [PubMed] [Google Scholar]
- McGlynn P., Hunter C. N., Jones M. R. The Rhodobacter sphaeroides PufX protein is not required for photosynthetic competence in the absence of a light harvesting system. FEBS Lett. 1994 Aug 8;349(3):349–353. doi: 10.1016/0014-5793(94)00701-2. [DOI] [PubMed] [Google Scholar]
- Meadows K. A., Iida K., Tsuda K., Recchia P. A., Heller B. A., Antonio B., Nango M., Loach P. A. Enzymatic and chemical cleavage of the core light-harvesting polypeptides of photosynthetic bacteria: determination of the minimal polypeptide size and structure required for subunit and light-harvesting complex formation. Biochemistry. 1995 Feb 7;34(5):1559–1574. doi: 10.1021/bi00005a012. [DOI] [PubMed] [Google Scholar]
- Prince R. C., Baccarini-Melandri A., Hauska G. A., Melandri B. A., Crofts A. R. Asymmetry of an energy transducing membrane the location of cytochrome c2 in Rhodopseudomonas spheroides and Rhodopseudomonas capsulata. Biochim Biophys Acta. 1975 May 15;387(2):212–227. doi: 10.1016/0005-2728(75)90104-8. [DOI] [PubMed] [Google Scholar]
- Robertson D. E., Dutton P. L. The nature and magnitude of the charge-separation reactions of ubiquinol cytochrome c2 oxidoreductase. Biochim Biophys Acta. 1988 Oct 5;935(3):273–291. doi: 10.1016/0005-2728(88)90223-x. [DOI] [PubMed] [Google Scholar]
- Youvan D. C., Hearst J. E., Marrs B. L. Isolation and characterization of enhanced fluorescence mutants of Rhodopseudomonas capsulata. J Bacteriol. 1983 May;154(2):748–755. doi: 10.1128/jb.154.2.748-755.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zilsel J., Lilburn T. G., Beatty J. T. Formation of functional inter-species hybrid photosynthetic complexes in Rhodobacter capsulatus. FEBS Lett. 1989 Aug 14;253(1-2):247–252. doi: 10.1016/0014-5793(89)80969-x. [DOI] [PubMed] [Google Scholar]