Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Aug;177(16):4820–4824. doi: 10.1128/jb.177.16.4820-4824.1995

Activation of the Escherichia coli lacZ promoter by the Klebsiella aerogenes nitrogen assimilation control protein (NAC), a LysR family transcription factor.

P J Pomposiello 1, R A Bender 1
PMCID: PMC177252  PMID: 7642513

Abstract

A chimeric promoter with the nitrogen assimilation control protein binding site from hutUp of Klebsiella aerogenes fused to the lacZ core promoter from Escherichia coli was built and cloned in a lacZ reporter plasmid. This construct showed a 14-fold increase of beta-galactosidase activity upon nitrogen limitation. Primer extension experiments showed that the nitrogen assimilation control protein activates lacZp1 in a position-dependent manner.

Full Text

The Full Text of this article is available as a PDF (392.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender R. A., Janssen K. A., Resnick A. D., Blumenberg M., Foor F., Magasanik B. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol. 1977 Feb;129(2):1001–1009. doi: 10.1128/jb.129.2.1001-1009.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bender R. A., Snyder P. M., Bueno R., Quinto M., Magasanik B. Nitrogen regulation system of Klebsiella aerogenes: the nac gene. J Bacteriol. 1983 Oct;156(1):444–446. doi: 10.1128/jb.156.1.444-446.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bender R. A. The role of the NAC protein in the nitrogen regulation of Klebsiella aerogenes. Mol Microbiol. 1991 Nov;5(11):2575–2580. doi: 10.1111/j.1365-2958.1991.tb01965.x. [DOI] [PubMed] [Google Scholar]
  4. Best E. A., Bender R. A. Cloning of the Klebsiella aerogenes nac gene, which encodes a factor required for nitrogen regulation of the histidine utilization (hut) operons in Salmonella typhimurium. J Bacteriol. 1990 Dec;172(12):7043–7048. doi: 10.1128/jb.172.12.7043-7048.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Busby S., West D., Lawes M., Webster C., Ishihama A., Kolb A. Transcription activation by the Escherichia coli cyclic AMP receptor protein. Receptors bound in tandem at promoters can interact synergistically. J Mol Biol. 1994 Aug 19;241(3):341–352. doi: 10.1006/jmbi.1994.1511. [DOI] [PubMed] [Google Scholar]
  6. Deich R. A., Metcalf B. J., Finn C. W., Farley J. E., Green B. A. Cloning of genes encoding a 15,000-dalton peptidoglycan-associated outer membrane lipoprotein and an antigenically related 15,000-dalton protein from Haemophilus influenzae. J Bacteriol. 1988 Feb;170(2):489–498. doi: 10.1128/jb.170.2.489-498.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gaston K., Bell A., Kolb A., Buc H., Busby S. Stringent spacing requirements for transcription activation by CRP. Cell. 1990 Aug 24;62(4):733–743. doi: 10.1016/0092-8674(90)90118-x. [DOI] [PubMed] [Google Scholar]
  8. Goldberg R. B., Hanau R. Regulation of Klebsiella pneumoniae hut operons by oxygen. J Bacteriol. 1980 Feb;141(2):745–750. doi: 10.1128/jb.141.2.745-750.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goss T. J., Bender R. A. The nitrogen assimilation control protein, NAC, is a DNA binding transcription activator in Klebsiella aerogenes. J Bacteriol. 1995 Jun;177(12):3546–3555. doi: 10.1128/jb.177.12.3546-3555.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ishihama A. Role of the RNA polymerase alpha subunit in transcription activation. Mol Microbiol. 1992 Nov;6(22):3283–3288. doi: 10.1111/j.1365-2958.1992.tb02196.x. [DOI] [PubMed] [Google Scholar]
  11. Joung J. K., Koepp D. M., Hochschild A. Synergistic activation of transcription by bacteriophage lambda cI protein and E. coli cAMP receptor protein. Science. 1994 Sep 23;265(5180):1863–1866. doi: 10.1126/science.8091212. [DOI] [PubMed] [Google Scholar]
  12. Kolb A., Busby S., Buc H., Garges S., Adhya S. Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem. 1993;62:749–795. doi: 10.1146/annurev.bi.62.070193.003533. [DOI] [PubMed] [Google Scholar]
  13. Macaluso A., Best E. A., Bender R. A. Role of the nac gene product in the nitrogen regulation of some NTR-regulated operons of Klebsiella aerogenes. J Bacteriol. 1990 Dec;172(12):7249–7255. doi: 10.1128/jb.172.12.7249-7255.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Osuna R., Janes B. K., Bender R. A. Roles of catabolite activator protein sites centered at -81.5 and -41.5 in the activation of the Klebsiella aerogenes histidine utilization operon hutUH. J Bacteriol. 1994 Sep;176(17):5513–5524. doi: 10.1128/jb.176.17.5513-5524.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Osuna R., Schwacha A., Bender R. A. Identification of the hutUH operator (hutUo) from Klebsiella aerogenes by DNA deletion analysis. J Bacteriol. 1994 Sep;176(17):5525–5529. doi: 10.1128/jb.176.17.5525-5529.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reznikoff W. S. Catabolite gene activator protein activation of lac transcription. J Bacteriol. 1992 Feb;174(3):655–658. doi: 10.1128/jb.174.3.655-658.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schell M. A. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol. 1993;47:597–626. doi: 10.1146/annurev.mi.47.100193.003121. [DOI] [PubMed] [Google Scholar]
  18. Schwacha A., Bender R. A. The nac (nitrogen assimilation control) gene from Klebsiella aerogenes. J Bacteriol. 1993 Apr;175(7):2107–2115. doi: 10.1128/jb.175.7.2107-2115.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schwacha A., Bender R. A. The product of the Klebsiella aerogenes nac (nitrogen assimilation control) gene is sufficient for activation of the hut operons and repression of the gdh operon. J Bacteriol. 1993 Apr;175(7):2116–2124. doi: 10.1128/jb.175.7.2116-2124.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spiro S., Guest J. R. Activation of the lac operon of Escherichia coli by a mutant FNR protein. Mol Microbiol. 1987 Jul;1(1):53–58. doi: 10.1111/j.1365-2958.1987.tb00526.x. [DOI] [PubMed] [Google Scholar]
  21. Stock J. B., Ninfa A. J., Stock A. M. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 1989 Dec;53(4):450–490. doi: 10.1128/mr.53.4.450-490.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ushida C., Aiba H. Helical phase dependent action of CRP: effect of the distance between the CRP site and the -35 region on promoter activity. Nucleic Acids Res. 1990 Nov 11;18(21):6325–6330. doi: 10.1093/nar/18.21.6325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vallette F., Mege E., Reiss A., Adesnik M. Construction of mutant and chimeric genes using the polymerase chain reaction. Nucleic Acids Res. 1989 Jan 25;17(2):723–733. doi: 10.1093/nar/17.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Xiong X. F., de la Cruz N., Reznikoff W. S. Downstream deletion analysis of the lac promoter. J Bacteriol. 1991 Aug;173(15):4570–4577. doi: 10.1128/jb.173.15.4570-4577.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zhang X. P., Ebright R. H. Substitution of 2 base pairs (1 base pair per DNA half-site) within the Escherichia coli lac promoter DNA site for catabolite gene activator protein places the lac promoter in the FNR regulon. J Biol Chem. 1990 Jul 25;265(21):12400–12403. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES