Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Sep;177(17):4908–4913. doi: 10.1128/jb.177.17.4908-4913.1995

Roles of bovine serum albumin and copper in the assay and stability of ammonia monooxygenase activity in vitro.

L Y Juliette 1, M R Hyman 1, D J Arp 1
PMCID: PMC177264  PMID: 7665467

Abstract

We investigated the effects of bovine serum albumin (BSA) on both the assay and the stability of ammonia-oxidizing activity in cell extracts of Nitrosomonas europaea. Ammonia-dependent O2 uptake activity of freshly prepared extracts did not require BSA. However, a dependence on BSA developed in extracts within a short time. The role of BSA in the assay of ammonia-oxidizing activity apparently is to absorb endogenous free fatty acids which are present in the extracts, because (i) only proteins which bind fatty acids, e.g., BSA or beta-lactoglobulin, supported ammonia-oxidizing activity; (ii) exogenous palmitoleic acid completely inhibited ammonia-dependent O2 uptake activity; (iii) the inhibition caused by palmitoleic acid was reversed only by proteins which bind fatty acids; and (iv) the concentration of endogenous free palmitoleic acid increased during aging of cell extracts. Additionally, the presence of BSA (10 mg/ml) or CuCl2 (500 microM) stabilized ammonia-dependent O2 uptake activity for 2 to 3 days at 4 degrees C. The stabilizing effect of BSA or CuCl2 was apparently due to an inhibition of lipolysis, because both additives inhibited the increase in concentrations of free palmitoleic acid in aging extracts. Other additives which are known to modify lipase activity were also found to stabilize ammonia-oxidizing activity. These additives included HgCl2, lecithin, and phenylmethylsulfonyl fluoride.

Full Text

The Full Text of this article is available as a PDF (218.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blumer M., Chase T., Watson S. W. Fatty acids in the lipids of marine and terrestrial nitrifying bacteria. J Bacteriol. 1969 Aug;99(2):366–370. doi: 10.1128/jb.99.2.366-370.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ensign S. A., Hyman M. R., Arp D. J. In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J Bacteriol. 1993 Apr;175(7):1971–1980. doi: 10.1128/jb.175.7.1971-1980.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Galliard T. Techniques for overcoming problems of lipolytic enzymes and lipoxygenases in the preparation of plant organelles. Methods Enzymol. 1974;31:520–528. doi: 10.1016/0076-6879(74)31056-7. [DOI] [PubMed] [Google Scholar]
  4. Glatz J. F., Veerkamp J. H. A radiochemical procedure for the assay of fatty acid binding by proteins. Anal Biochem. 1983 Jul 1;132(1):89–95. doi: 10.1016/0003-2697(83)90429-3. [DOI] [PubMed] [Google Scholar]
  5. Honjo I., Ozawa K., Kitamura O., Sakai A., Ohsawa T. Rapid change of phospholipid in pancreas mitochondria during aging. J Biochem. 1968 Sep;64(3):311–320. doi: 10.1093/oxfordjournals.jbchem.a128897. [DOI] [PubMed] [Google Scholar]
  6. Hyman M. R., Arp D. J. Quantification and removal of some contaminating gases from acetylene used to study gas-utilizing enzymes and microorganisms. Appl Environ Microbiol. 1987 Feb;53(2):298–303. doi: 10.1128/aem.53.2.298-303.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hyman M. R., Murton I. B., Arp D. J. Interaction of Ammonia Monooxygenase from Nitrosomonas europaea with Alkanes, Alkenes, and Alkynes. Appl Environ Microbiol. 1988 Dec;54(12):3187–3190. doi: 10.1128/aem.54.12.3187-3190.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ko Y. T., Frost D. J., Ho C. T., Ludescher R. D., Wasserman B. P. Inhibition of yeast (1,3)-beta-glucan synthase by phospholipase A2 and its reaction products. Biochim Biophys Acta. 1994 Jul 13;1193(1):31–40. doi: 10.1016/0005-2736(94)90329-8. [DOI] [PubMed] [Google Scholar]
  9. Nishijima M., Nakaike S., Tamori Y., Nojima S. Detergent-resistant phospholipase A of Escherichia coli K-12. Purification and properties. Eur J Biochem. 1977 Feb 15;73(1):115–124. doi: 10.1111/j.1432-1033.1977.tb11297.x. [DOI] [PubMed] [Google Scholar]
  10. ROSSI C. R., ROSSI C. S., SARTORELLI L., SILIPRANDI D., SILIPRANDI N. Protective action of phosphorylcholine on mitochondrial oxidative phosphorylation. Arch Biochem Biophys. 1962 Nov;99:214–221. doi: 10.1016/0003-9861(62)90003-6. [DOI] [PubMed] [Google Scholar]
  11. Rottenberg H., Hashimoto K. Fatty acid uncoupling of oxidative phosphorylation in rat liver mitochondria. Biochemistry. 1986 Apr 8;25(7):1747–1755. doi: 10.1021/bi00355a045. [DOI] [PubMed] [Google Scholar]
  12. Skulachev V. P. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett. 1991 Dec 9;294(3):158–162. doi: 10.1016/0014-5793(91)80658-p. [DOI] [PubMed] [Google Scholar]
  13. Spector A. A., John K., Fletcher J. E. Binding of long-chain fatty acids to bovine serum albumin. J Lipid Res. 1969 Jan;10(1):56–67. [PubMed] [Google Scholar]
  14. Suzuki I., Kwok S. C. Cell-free ammonia oxidation by Nitrosomonas europaea extracts: effects of polyamines, Mg2+ and albumin. Biochem Biophys Res Commun. 1970 Jun 5;39(5):950–955. doi: 10.1016/0006-291x(70)90416-x. [DOI] [PubMed] [Google Scholar]
  15. Suzuki I., Kwok S. C., Dular U., Tsang D. C. Cell-free ammonia-oxidizing system of Nitrosomonas europaea: general conditions and properties. Can J Biochem. 1981 Jul;59(7):477–483. doi: 10.1139/o81-066. [DOI] [PubMed] [Google Scholar]
  16. WILLS E. D. The relation of metals and -SH groups to the activity of pancreatic lipase. Biochim Biophys Acta. 1960 Jun 3;40:481–490. doi: 10.1016/0006-3002(60)91389-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES