Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Sep;177(17):4974–4979. doi: 10.1128/jb.177.17.4974-4979.1995

Effects of ammonia on the de novo synthesis of polypeptides in cells of Nitrosomonas europaea denied ammonia as an energy source.

M R Hyman 1, D J Arp 1
PMCID: PMC177273  PMID: 7665474

Abstract

The effects of ammonium on the de novo synthesis of polypeptides in the soil-nitrifying bacterium Nitrosomonas europaea have been investigated. Cells were incubated in the presence of both acetylene and NH4+. Under these conditions, the cells were unable to utilize NH4+ as an energy source. Energy to support protein synthesis was supplied by the oxidation of hydroxylamine or other alternative substrates for hydroxylamine oxidoreductase. De novo protein synthesis was detected by 14C incorporation from 14CO2 into polypeptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. In the presence of NH4+, acetylene-treated cells synthesized the 27-kDa polypeptide of ammonia monoxygenase (AMO) and two other major polypeptides (with sizes of 55 and 65 kDa). The synthesis of these polypeptides was completely inhibited by chloramphenicol and attenuated by rifampin. The optimal concentration of hydroxylamine for the in vivo 14C-labeling reaction was found to be 2 mM. The effect of NH4+ concentration was also examined. It was shown to cause a saturable response with a Ks of approximately 2.0 mM NH4+. Labeling studies conducted at different pH values suggest cells respond to NH3 rather than NH4+. No other compounds tested were able to influence the synthesis of the 27-kDa component of AMO, although we have also demonstrated that this polypeptide can be synthesized under anaerobic conditions in cells utilizing pyruvate- or hydrazine-dependent nitrite reduction as an energy source. We conclude that ammonia has a regulatory effect on the synthesis of a subunit of AMO in addition to providing nitrogen for protein synthesis.

Full Text

The Full Text of this article is available as a PDF (322.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonam D., McKenna M. C., Stephens P. J., Ludden P. W. Nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: in vivo and in vitro activation by exogenous nickel. Proc Natl Acad Sci U S A. 1988 Jan;85(1):31–35. doi: 10.1073/pnas.85.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Doyle C. M., Arp D. J. Regulation of H2 oxidation activity and hydrogenase protein levels by H2, O2, and carbon substrates in Alcaligenes latus. J Bacteriol. 1987 Oct;169(10):4463–4468. doi: 10.1128/jb.169.10.4463-4468.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ensign S. A., Hyman M. R., Arp D. J. In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J Bacteriol. 1993 Apr;175(7):1971–1980. doi: 10.1128/jb.175.7.1971-1980.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hooper A. B., Hansen J., Bell R. Characterization of glutamate dehydrogenase from the ammonia-oxidizing chemoautotroph Nitrosomonas europaea. J Biol Chem. 1967 Jan 25;242(2):288–296. [PubMed] [Google Scholar]
  6. Hooper A. B., Tran V. M., Balny C. Kinetics of reduction by substrate or dithionite and heme-heme electron transfer in the multiheme hydroxylamine oxidoreductase. Eur J Biochem. 1984 Jun 15;141(3):565–571. doi: 10.1111/j.1432-1033.1984.tb08230.x. [DOI] [PubMed] [Google Scholar]
  7. Hyman M. R., Arp D. J. 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. J Biol Chem. 1992 Jan 25;267(3):1534–1545. [PubMed] [Google Scholar]
  8. Hyman M. R., Arp D. J. An electrophoretic study of the thermal- and reductant-dependent aggregation of the 27 kDa component of ammonia monooxygenase from Nitrosomonas europaea. Electrophoresis. 1993 Jul;14(7):619–627. doi: 10.1002/elps.1150140197. [DOI] [PubMed] [Google Scholar]
  9. Hyman M. R., Murton I. B., Arp D. J. Interaction of Ammonia Monooxygenase from Nitrosomonas europaea with Alkanes, Alkenes, and Alkynes. Appl Environ Microbiol. 1988 Dec;54(12):3187–3190. doi: 10.1128/aem.54.12.3187-3190.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hyman M. R., Page C. L., Arp D. J. Oxidation of methyl fluoride and dimethyl ether by ammonia monooxygenase in Nitrosomonas europaea. Appl Environ Microbiol. 1994 Aug;60(8):3033–3035. doi: 10.1128/aem.60.8.3033-3035.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hyman M. R., Wood P. M. Methane oxidation by Nitrosomonas europaea. Biochem J. 1983 Apr 15;212(1):31–37. doi: 10.1042/bj2120031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hyman M. R., Wood P. M. Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene. Biochem J. 1985 May 1;227(3):719–725. doi: 10.1042/bj2270719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Juliette L. Y., Hyman M. R., Arp D. J. Inhibition of Ammonia Oxidation in Nitrosomonas europaea by Sulfur Compounds: Thioethers Are Oxidized to Sulfoxides by Ammonia Monooxygenase. Appl Environ Microbiol. 1993 Nov;59(11):3718–3727. doi: 10.1128/aem.59.11.3718-3727.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keener W. K., Arp D. J. Transformations of Aromatic Compounds by Nitrosomonas europaea. Appl Environ Microbiol. 1994 Jun;60(6):1914–1920. doi: 10.1128/aem.60.6.1914-1920.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. McTavish H., Fuchs J. A., Hooper A. B. Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol. 1993 Apr;175(8):2436–2444. doi: 10.1128/jb.175.8.2436-2444.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Poth M., Focht D. D. N Kinetic Analysis of N(2)O Production by Nitrosomonas europaea: an Examination of Nitrifier Denitrification. Appl Environ Microbiol. 1985 May;49(5):1134–1141. doi: 10.1128/aem.49.5.1134-1141.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rasche M. E., Hyman M. R., Arp D. J. Factors Limiting Aliphatic Chlorocarbon Degradation by Nitrosomonas europaea: Cometabolic Inactivation of Ammonia Monooxygenase and Substrate Specificity. Appl Environ Microbiol. 1991 Oct;57(10):2986–2994. doi: 10.1128/aem.57.10.2986-2994.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Suzuki I., Dular U., Kwok S. C. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. J Bacteriol. 1974 Oct;120(1):556–558. doi: 10.1128/jb.120.1.556-558.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vannelli T., Logan M., Arciero D. M., Hooper A. B. Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol. 1990 Apr;56(4):1169–1171. doi: 10.1128/aem.56.4.1169-1171.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES