Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Sep;177(17):5088–5098. doi: 10.1128/jb.177.17.5088-5098.1995

Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway.

J S Velterop 1, E Sellink 1, J J Meulenberg 1, S David 1, I Bulder 1, P W Postma 1
PMCID: PMC177288  PMID: 7665488

Abstract

In Klebsiella pneumoniae, six genes, constituting the pqqABCDEF operon, which are required for the synthesis of the cofactor pyrroloquinoline quinone (PQQ) have been identified. The role of each of these K. pneumoniae Pqq proteins was examined by expression of the cloned pqq genes in Escherichia coli, which cannot synthesize PQQ. All six pqq genes were required for PQQ biosynthesis and excretion into the medium in sufficient amounts to allow growth of E. coli on glucose via the PQQ-dependent glucose dehydrogenase. Mutants lacking the PqqB or PqqF protein synthesized small amounts of PQQ, however. PQQ synthesis was also studied in cell extracts. Extracts made from cells containing all Pqq proteins contained PQQ. Lack of each of the Pqq proteins except PqqB resulted in the absence of PQQ. Extracts lacking PqqB synthesized PQQ slowly. Complementation studies with extracts containing different Pqq proteins showed that an extract lacking PqqC synthesized an intermediate which was also detected in the culture medium of pqqC mutants. It is proposed that PqqC catalyzes the last step in PQQ biosynthesis. Studies with cells lacking PqqB suggest that the same intermediate might be accumulated in these mutants. By using pqq-lacZ protein fusions, it was shown that the expression of the putative precursor of PQQ, the small PqqA polypeptide, was much higher than that of the other Pqq proteins. Synthesis of PQQ most likely requires molecular oxygen, since PQQ was not synthesized under anaerobic conditions, although the pqq genes were expressed.

Full Text

The Full Text of this article is available as a PDF (350.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann E., Brosius J., Ptashne M. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene. 1983 Nov;25(2-3):167–178. doi: 10.1016/0378-1119(83)90222-6. [DOI] [PubMed] [Google Scholar]
  2. Borck K., Beggs J. D., Brammar W. J., Hopkins A. S., Murray N. E. The construction in vitro of transducing derivatives of phage lambda. Mol Gen Genet. 1976 Jul 23;146(2):199–207. doi: 10.1007/BF00268089. [DOI] [PubMed] [Google Scholar]
  3. Brosius J., Holy A. Regulation of ribosomal RNA promoters with a synthetic lac operator. Proc Natl Acad Sci U S A. 1984 Nov;81(22):6929–6933. doi: 10.1073/pnas.81.22.6929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CAMPBELL A. Sensitive mutants of bacteriophage lambda. Virology. 1961 May;14:22–32. doi: 10.1016/0042-6822(61)90128-3. [DOI] [PubMed] [Google Scholar]
  5. Casadaban M. J., Martinez-Arias A., Shapira S. K., Chou J. Beta-galactosidase gene fusions for analyzing gene expression in escherichia coli and yeast. Methods Enzymol. 1983;100:293–308. doi: 10.1016/0076-6879(83)00063-4. [DOI] [PubMed] [Google Scholar]
  6. Chow W. Y., Berg D. E. Tn5tac1, a derivative of transposon Tn5 that generates conditional mutations. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6468–6472. doi: 10.1073/pnas.85.17.6468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clarke L., Carbon J. Functional expression of cloned yeast DNA in Escherichia coli: specific complementation of argininosuccinate lyase (argH) mutations. J Mol Biol. 1978 Apr 25;120(4):517–532. doi: 10.1016/0022-2836(78)90351-0. [DOI] [PubMed] [Google Scholar]
  8. Curtis S. J., Epstein W. Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J Bacteriol. 1975 Jun;122(3):1189–1199. doi: 10.1128/jb.122.3.1189-1199.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duine J. A., Frank J., Verwiel P. E. Structure and activity of the prosthetic group of methanol dehydrogenase. Eur J Biochem. 1980;108(1):187–192. doi: 10.1111/j.1432-1033.1980.tb04711.x. [DOI] [PubMed] [Google Scholar]
  10. Fürste J. P., Pansegrau W., Frank R., Blöcker H., Scholz P., Bagdasarian M., Lanka E. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene. 1986;48(1):119–131. doi: 10.1016/0378-1119(86)90358-6. [DOI] [PubMed] [Google Scholar]
  11. Goosen N., Horsman H. P., Huinen R. G., van de Putte P. Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide sequence and expression in Escherichia coli K-12. J Bacteriol. 1989 Jan;171(1):447–455. doi: 10.1128/jb.171.1.447-455.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goosen N., Huinen R. G., van de Putte P. A 24-amino-acid polypeptide is essential for the biosynthesis of the coenzyme pyrrolo-quinoline-quinone. J Bacteriol. 1992 Feb;174(4):1426–1427. doi: 10.1128/jb.174.4.1426-1427.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goosen N., Vermaas D. A., van de Putte P. Cloning of the genes involved in synthesis of coenzyme pyrrolo-quinoline-quinone from Acinetobacter calcoaceticus. J Bacteriol. 1987 Jan;169(1):303–307. doi: 10.1128/jb.169.1.303-307.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klinman J. P., Mu D. Quinoenzymes in biology. Annu Rev Biochem. 1994;63:299–344. doi: 10.1146/annurev.bi.63.070194.001503. [DOI] [PubMed] [Google Scholar]
  15. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  16. Liu S. T., Lee L. Y., Tai C. Y., Hung C. H., Chang Y. S., Wolfram J. H., Rogers R., Goldstein A. H. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J Bacteriol. 1992 Sep;174(18):5814–5819. doi: 10.1128/jb.174.18.5814-5819.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Manoil C. Analysis of protein localization by use of gene fusions with complementary properties. J Bacteriol. 1990 Feb;172(2):1035–1042. doi: 10.1128/jb.172.2.1035-1042.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meulenberg J. J., Loenen W. A., Sellink E., Postma P. W. A general method for the transfer of plasmid-borne mutant alleles to the chromosome of Klebsiella pneumoniae using bacteriophage lambda: transfer of pqq genes. Mol Gen Genet. 1990 Feb;220(3):481–484. doi: 10.1007/BF00391758. [DOI] [PubMed] [Google Scholar]
  19. Meulenberg J. J., Sellink E., Loenen W. A., Riegman N. H., van Kleef M., Postma P. W. Cloning of Klebsiella pneumoniae pqq genes and PQQ biosynthesis in Escherichia coli. FEMS Microbiol Lett. 1990 Sep 15;59(3):337–343. doi: 10.1016/0378-1097(90)90244-k. [DOI] [PubMed] [Google Scholar]
  20. Meulenberg J. J., Sellink E., Riegman N. H., Postma P. W. Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Mol Gen Genet. 1992 Mar;232(2):284–294. doi: 10.1007/BF00280008. [DOI] [PubMed] [Google Scholar]
  21. Morris C. J., Biville F., Turlin E., Lee E., Ellermann K., Fan W. H., Ramamoorthi R., Springer A. L., Lidstrom M. E. Isolation, phenotypic characterization, and complementation analysis of mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline quinone and sequences of pqqD, pqqG, and pqqC. J Bacteriol. 1994 Mar;176(6):1746–1755. doi: 10.1128/jb.176.6.1746-1755.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ramamoorthi R., Lidstrom M. E. Transcriptional analysis of pqqD and study of the regulation of pyrroloquinoline quinone biosynthesis in Methylobacterium extorquens AM1. J Bacteriol. 1995 Jan;177(1):206–211. doi: 10.1128/jb.177.1.206-211.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reddy P., Peterkofsky A., McKenney K. Hyperexpression and purification of Escherichia coli adenylate cyclase using a vector designed for expression of lethal gene products. Nucleic Acids Res. 1989 Dec 25;17(24):10473–10488. doi: 10.1093/nar/17.24.10473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Robinson A., Tempest D. W. Phenotypic variability of the envelope proteins of Klebsiella aerogenes. J Gen Microbiol. 1973 Oct;78(2):361–370. doi: 10.1099/00221287-78-2-361. [DOI] [PubMed] [Google Scholar]
  25. Salisbury S. A., Forrest H. S., Cruse W. B., Kennard O. A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature. 1979 Aug 30;280(5725):843–844. doi: 10.1038/280843a0. [DOI] [PubMed] [Google Scholar]
  26. Scholte B. J., Postma P. W. Mutation in the crp gene of Salmonella typhimurium which interferes with inducer exclusion. J Bacteriol. 1980 Feb;141(2):751–757. doi: 10.1128/jb.141.2.751-757.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  28. Simon R., Quandt J., Klipp W. New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. Gene. 1989 Aug 1;80(1):161–169. doi: 10.1016/0378-1119(89)90262-x. [DOI] [PubMed] [Google Scholar]
  29. Slauch J. M., Silhavy T. J. Genetic fusions as experimental tools. Methods Enzymol. 1991;204:213–248. doi: 10.1016/0076-6879(91)04011-c. [DOI] [PubMed] [Google Scholar]
  30. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  31. Stock J. B., Rauch B., Roseman S. Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem. 1977 Nov 10;252(21):7850–7861. [PubMed] [Google Scholar]
  32. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  33. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. doi: 10.1016/0378-1119(84)90012-x. [DOI] [PubMed] [Google Scholar]
  34. Wehmeier U., Sprenger G. A., Lengeler J. W. The use of lambda plac-Mu hybrid phages in Klebsiella pneumoniae and the isolation of stable Hfr strains. Mol Gen Genet. 1989 Feb;215(3):529–536. doi: 10.1007/BF00427052. [DOI] [PubMed] [Google Scholar]
  35. de Jong G. A., Geerlof A., Stoorvogel J., Jongejan J. A., de Vries S., Duine J. A. Quinohaemoprotein ethanol dehydrogenase from Comamonas testosteroni. Purification, characterization, and reconstitution of the apoenzyme with pyrroloquinoline quinone analogues. Eur J Biochem. 1995 Jun 15;230(3):899–905. doi: 10.1111/j.1432-1033.1995.tb20634.x. [DOI] [PubMed] [Google Scholar]
  36. van Kleef M. A., Duine J. A. A search for intermediates in the bacterial biosynthesis of PQQ. Biofactors. 1988 Dec;1(4):297–302. [PubMed] [Google Scholar]
  37. van Kleef M. A., Duine J. A. L-tyrosine is the precursor of PQQ biosynthesis in Hyphomicrobium X. FEBS Lett. 1988 Sep 12;237(1-2):91–97. doi: 10.1016/0014-5793(88)80178-9. [DOI] [PubMed] [Google Scholar]
  38. van der Meer R. A., Groen B. W., van Kleef M. A., Frank J., Jongejan J. A., Duine J. A. Isolation, preparation, and assay of pyrroloquinoline quinone. Methods Enzymol. 1990;188:260–283. doi: 10.1016/0076-6879(90)88043-a. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES