Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Sep;177(17):5161–5165. doi: 10.1128/jb.177.17.5161-5165.1995

Occurrence of the regulatory nucleotides ppGpp and pppGpp following induction of the stringent response in staphylococci.

R Cassels 1, B Oliva 1, D Knowles 1
PMCID: PMC177300  PMID: 7665499

Abstract

The stringent response in Escherichia coli and many other organisms is regulated by the nucleotides ppGpp and pppGpp. We show here for the first time that at least six staphylococcal species also synthesize ppGpp and pppGpp upon induction of the stringent response by mupirocin. Spots corresponding to ppGpp and pppGpp on thin-layer chromatograms suggest that pppGpp is the principal regulatory nucleotide synthesized by staphylococci in response to mupirocin, rather than ppGpp as in E. coli.

Full Text

The Full Text of this article is available as a PDF (547.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cashel M., Gallant J. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature. 1969 Mar 1;221(5183):838–841. doi: 10.1038/221838a0. [DOI] [PubMed] [Google Scholar]
  2. Cashel M., Kalbacher B. The control of ribonucleic acid synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. J Biol Chem. 1970 May 10;245(9):2309–2318. [PubMed] [Google Scholar]
  3. Cherrington C. A., Hinton M., Chopra I. Effect of short-chain organic acids on macromolecular synthesis in Escherichia coli. J Appl Bacteriol. 1990 Jan;68(1):69–74. doi: 10.1111/j.1365-2672.1990.tb02550.x. [DOI] [PubMed] [Google Scholar]
  4. Cortay J. C., Cozzone A. J. Accumulation of guanosine tetraphosphate induced by polymixin and gramicidin in Escherichia coli. Biochim Biophys Acta. 1983 Feb 22;755(3):467–473. doi: 10.1016/0304-4165(83)90251-9. [DOI] [PubMed] [Google Scholar]
  5. Fiil N. P., von Meyenburg K., Friesen J. D. Accumulation and turnover of guanosine tetraphosphate in Escherichia coli. J Mol Biol. 1972 Nov 28;71(3):769–783. doi: 10.1016/s0022-2836(72)80037-8. [DOI] [PubMed] [Google Scholar]
  6. Gallant J., Margason G., Finch B. On the turnover of ppGpp in Escherichia coli. J Biol Chem. 1972 Oct 10;247(19):6055–6058. [PubMed] [Google Scholar]
  7. Gentry D. R., Hernandez V. J., Nguyen L. H., Jensen D. B., Cashel M. Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp. J Bacteriol. 1993 Dec;175(24):7982–7989. doi: 10.1128/jb.175.24.7982-7989.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilbart J., Perry C. R., Slocombe B. High-level mupirocin resistance in Staphylococcus aureus: evidence for two distinct isoleucyl-tRNA synthetases. Antimicrob Agents Chemother. 1993 Jan;37(1):32–38. doi: 10.1128/aac.37.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haseltine W. A., Block R. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci U S A. 1973 May;70(5):1564–1568. doi: 10.1073/pnas.70.5.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hernandez V. J., Bremer H. Escherichia coli ppGpp synthetase II activity requires spoT. J Biol Chem. 1991 Mar 25;266(9):5991–5999. [PubMed] [Google Scholar]
  11. Hughes J., Mellows G. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid. Biochem J. 1978 Oct 15;176(1):305–318. doi: 10.1042/bj1760305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hughes J., Mellows G. Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochem J. 1980 Oct 1;191(1):209–219. doi: 10.1042/bj1910209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hughes J., Mellows G. On the mode of action of pseudomonic acid: inhibition of protein synthesis in Staphylococcus aureus. J Antibiot (Tokyo) 1978 Apr;31(4):330–335. doi: 10.7164/antibiotics.31.330. [DOI] [PubMed] [Google Scholar]
  14. Irr J. D., Kaulenas M. S., Unsworth B. R. Synthesis of ppGpp by mouse embryonic ribosomes. Cell. 1974 Nov;3(3):249–253. doi: 10.1016/0092-8674(74)90139-1. [DOI] [PubMed] [Google Scholar]
  15. Justesen J., Lund T., Skou Pedersen F., Kjeldgaard N. O. The physiology of stringent factor (ATP:GTP 3'-diphosphotransferase) in Escherichia coli. Biochimie. 1986 May;68(5):715–722. doi: 10.1016/s0300-9084(86)80165-1. [DOI] [PubMed] [Google Scholar]
  16. Kaplan S., Atherly A. G., Barrett A. Synthesis of stable RNA in stringent Escherichia coli cells in the absence of charged transfer RNA. Proc Natl Acad Sci U S A. 1973 Mar;70(3):689–692. doi: 10.1073/pnas.70.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mowbray C. T., Chamberlain P., Jennings M., Reed C. Consumer-run mental health services: results from five demonstration projects. Community Ment Health J. 1988 Summer;24(2):151–156. doi: 10.1007/BF00756657. [DOI] [PubMed] [Google Scholar]
  18. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rheinberger H. J., Nierhaus K. H. Partial release of AcPhe-Phe-tRNA from ribosomes during poly(U)-dependent poly(Phe) synthesis and the effects of chloramphenicol. Eur J Biochem. 1990 Nov 13;193(3):643–650. doi: 10.1111/j.1432-1033.1990.tb19382.x. [DOI] [PubMed] [Google Scholar]
  20. Rojiani M. V., Jakubowski H., Goldman E. Effect of variation of charged and uncharged tRNA(Trp) levels on ppGpp synthesis in Escherichia coli. J Bacteriol. 1989 Dec;171(12):6493–6502. doi: 10.1128/jb.171.12.6493-6502.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Scoarughi G. L., Cimmino C., Donini P. Lack of production of (p)ppGpp in Halobacterium volcanii under conditions that are effective in the eubacteria. J Bacteriol. 1995 Jan;177(1):82–85. doi: 10.1128/jb.177.1.82-85.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Silverman R. H., Atherly A. G. The search for guanosine tetraphosphate (ppGpp) and other unusual nucleotides in eucaryotes. Microbiol Rev. 1979 Mar;43(1):27–41. doi: 10.1128/mr.43.1.27-41.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Somerville C. R., Ahmed A. Mutants of Escherichia coli defective in the degradation of guanosine 5'-triphosphate, 3'-diphosphate (pppGpp). Mol Gen Genet. 1979 Feb 1;169(3):315–323. doi: 10.1007/BF00382277. [DOI] [PubMed] [Google Scholar]
  24. Stephens J. C., Artz S. W., Ames B. N. Guanosine 5'-diphosphate 3'-diphosphate (ppGpp): positive effector for histidine operon transcription and general signal for amino-acid deficiency. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4389–4393. doi: 10.1073/pnas.72.11.4389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sutherland R., Boon R. J., Griffin K. E., Masters P. J., Slocombe B., White A. R. Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob Agents Chemother. 1985 Apr;27(4):495–498. doi: 10.1128/aac.27.4.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sørensen M. A., Jensen K. F., Pedersen S. High concentrations of ppGpp decrease the RNA chain growth rate. Implications for protein synthesis and translational fidelity during amino acid starvation in Escherichia coli. J Mol Biol. 1994 Feb 18;236(2):441–454. doi: 10.1006/jmbi.1994.1156. [DOI] [PubMed] [Google Scholar]
  27. Vogel U., Jensen K. F. Effects of guanosine 3',5'-bisdiphosphate (ppGpp) on rate of transcription elongation in isoleucine-starved Escherichia coli. J Biol Chem. 1994 Jun 10;269(23):16236–16241. [PubMed] [Google Scholar]
  28. Werner R. G., Thorpe L. F., Reuter W., Nierhaus K. H. Indolmycin inhibits prokaryotic tryptophanyl-tRNA ligase. Eur J Biochem. 1976 Sep;68(1):1–3. doi: 10.1111/j.1432-1033.1976.tb10758.x. [DOI] [PubMed] [Google Scholar]
  29. Xiao H., Kalman M., Ikehara K., Zemel S., Glaser G., Cashel M. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem. 1991 Mar 25;266(9):5980–5990. [PubMed] [Google Scholar]
  30. de Boer H. A., Raué H. A., Ab G., Gruber M. Role of the ribosome in stringent control of bacterial RNA synthesis. Biochim Biophys Acta. 1971 Aug 12;246(1):157–160. doi: 10.1016/0005-2787(71)90081-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES