Abstract
Membrane vesicles prepared from Zymomonas mobilis oxidized NADH exclusively, whereas deamino-NADH was little oxidized. In addition, the respiratory chain-linked NADH oxidase system exhibited only a single apparent Km value of approximately 66 microM for NADH. The NADH oxidase was highly sensitive to the respiratory chain inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide. However, the NADH:quinone oxidoreductase was not sensitive to 2-heptyl-4-hydroxyquinoline-N-oxide and was highly resistant to another respiratory chain inhibitor, rotenone. Electron transfer from NADH to oxygen generated a proton electrochemical gradient (inside positive) in inside-out membrane vesicles. In contrast, electron transfer from NADH to ubiquinone-1 generated no electrochemical gradient. These findings indicate that Z. mobilis possesses only NADH:quinone oxidoreductase lacking the energy coupling site.
Full Text
The Full Text of this article is available as a PDF (173.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BELAUICH J. P., SENEZ J. C. INFLUENCE OF AERATION AND OF PANTOTHENATE ON GROWTH YIELDS OF ZYMOMONAS MOBILIS. J Bacteriol. 1965 May;89:1195–1200. doi: 10.1128/jb.89.5.1195-1200.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baratti J. C., Bu'lock J. D. Zymomonas mobilis: a bacterium for ethanol production. Biotechnol Adv. 1986;4(1):95–115. doi: 10.1016/0734-9750(86)90006-6. [DOI] [PubMed] [Google Scholar]
- GIBBS M., DEMOSS R. D. Anaerobic dissimilation of C14-labeled glucose and fructose by Pseudomonas lindneri. J Biol Chem. 1954 Apr;207(2):689–694. [PubMed] [Google Scholar]
- Kim Y. J., Mizushima S., Tokuda H. Fluorescence quenching studies on the characterization of energy generated at the NADH:quinone oxidoreductase and quinol oxidase segments of marine bacteria. J Biochem. 1991 Apr;109(4):616–621. doi: 10.1093/oxfordjournals.jbchem.a123429. [DOI] [PubMed] [Google Scholar]
- Kim Y. J., Rajapandi T., Oliver D. SecA protein is exposed to the periplasmic surface of the E. coli inner membrane in its active state. Cell. 1994 Sep 9;78(5):845–853. doi: 10.1016/s0092-8674(94)90602-5. [DOI] [PubMed] [Google Scholar]
- Matsushita K., Ohnishi T., Kaback H. R. NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry. 1987 Dec 1;26(24):7732–7737. doi: 10.1021/bi00398a029. [DOI] [PubMed] [Google Scholar]
- Swings J., De Ley J. The biology of Zymomonas. Bacteriol Rev. 1977 Mar;41(1):1–46. doi: 10.1128/br.41.1.1-46.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokuda H., Unemoto T. Na+ is translocated at NADH:quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus. J Biol Chem. 1984 Jun 25;259(12):7785–7790. [PubMed] [Google Scholar]
- Yagi T. Bacterial NADH-quinone oxidoreductases. J Bioenerg Biomembr. 1991 Apr;23(2):211–225. doi: 10.1007/BF00762218. [DOI] [PubMed] [Google Scholar]
- Yagi T., Hon-nami K., Ohnishi T. Purification and characterization of two types of NADH-quinone reductase from Thermus thermophilus HB-8. Biochemistry. 1988 Mar 22;27(6):2008–2013. doi: 10.1021/bi00406a030. [DOI] [PubMed] [Google Scholar]
- Yagi T. Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy-coupling site 1 in various organisms. Arch Biochem Biophys. 1990 Sep;281(2):305–311. doi: 10.1016/0003-9861(90)90448-8. [DOI] [PubMed] [Google Scholar]
- Yagi T. The bacterial energy-transducing NADH-quinone oxidoreductases. Biochim Biophys Acta. 1993 Feb 8;1141(1):1–17. doi: 10.1016/0005-2728(93)90182-f. [DOI] [PubMed] [Google Scholar]