Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Sep;177(18):5284–5288. doi: 10.1128/jb.177.18.5284-5288.1995

Sequence analysis and overexpression of the Zymomonas mobilis tgt gene encoding tRNA-guanine transglycosylase: purification and biochemical characterization of the enzyme.

K Reuter 1, R Ficner 1
PMCID: PMC177320  PMID: 7665516

Abstract

tRNA-guanine transglycosylase (Tgt) is involved in the biosynthesis of the hypermodified tRNA nucleoside queuosine (Q). It catalyzes the posttranscriptional base exchange of the Q precursor 7-aminomethyl-7-deazaguanine (preQ1) with the genetically encoded guanine in the anticodon of tRNA(Asp), tRNA(Asn), tRNA(His), and tRNA(Tyr). A partially sequenced gene upstream of the DNA ligase (lig) gene of the Zymomonas mobilis chromosome shows strong homology to the tgt gene of Escherichia coli (K.B. Shark and T. Conway, FEMS Microbiol. Lett. 96:19-26, 1992). We showed that this gene is able to complement the tgt mutation in E. coli SJ1505, and we determined its complete sequence. Four start codons were possible for this gene, resulting in proteins of 386 to 399 amino acids (M(r), 42,800 to 44,300) showing 60.4% sequence identity with Tgt from E. coli. The smallest of the four possible reading frames, which was still extended at its 5' end compared with the E. coli tgt gene, was overexpressed in E. coli. The gene product was purified to homogeneity and was biochemically characterized. The kinetical parameters were virtually identical to those published for the E. coli enzyme. In contrast to E. coli Tgt, which is reported to be a homotrimer, Z. mobilis Tgt was found to be a monomer according to gel filtration. In this study, it was shown that the formation of homotrimers by the E. coli enzyme is readily reversible and is dependent on protein concentration.

Full Text

The Full Text of this article is available as a PDF (226.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnell W. O., Yi K. C., Conway T. Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism. J Bacteriol. 1990 Dec;172(12):7227–7240. doi: 10.1128/jb.172.12.7227-7240.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Björk G. R. Genetic dissection of synthesis and function of modified nucleosides in bacterial transfer RNA. Prog Nucleic Acid Res Mol Biol. 1995;50:263–338. doi: 10.1016/s0079-6603(08)60817-x. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Chong S., Curnow A. W., Huston T. J., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli is a zinc metalloprotein. Site-directed mutagenesis studies to identify the zinc ligands. Biochemistry. 1995 Mar 21;34(11):3694–3701. doi: 10.1021/bi00011a026. [DOI] [PubMed] [Google Scholar]
  5. Curnow A. W., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli: recognition of dimeric, unmodified tRNA(Tyr). Biochimie. 1994;76(12):1183–1191. doi: 10.1016/0300-9084(94)90048-5. [DOI] [PubMed] [Google Scholar]
  6. Curnow A. W., Kung F. L., Koch K. A., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli: gross tRNA structural requirements for recognition. Biochemistry. 1993 May 18;32(19):5239–5246. doi: 10.1021/bi00070a036. [DOI] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Durand J. M., Okada N., Tobe T., Watarai M., Fukuda I., Suzuki T., Nakata N., Komatsu K., Yoshikawa M., Sasakawa C. vacC, a virulence-associated chromosomal locus of Shigella flexneri, is homologous to tgt, a gene encoding tRNA-guanine transglycosylase (Tgt) of Escherichia coli K-12. J Bacteriol. 1994 Aug;176(15):4627–4634. doi: 10.1128/jb.176.15.4627-4634.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. French B. T., Patrick D. E., Grever M. R., Trewyn R. W. Queuine, a tRNA anticodon wobble base, maintains the proliferative and pluripotent potential of HL-60 cells in the presence of the differentiating agent 6-thioguanine. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):370–374. doi: 10.1073/pnas.88.2.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frey B., Jänel G., Michelsen U., Kersten H. Mutations in the Escherichia coli fnr and tgt genes: control of molybdate reductase activity and the cytochrome d complex by fnr. J Bacteriol. 1989 Mar;171(3):1524–1530. doi: 10.1128/jb.171.3.1524-1530.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frey B., McCloskey J., Kersten W., Kersten H. New function of vitamin B12: cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. J Bacteriol. 1988 May;170(5):2078–2082. doi: 10.1128/jb.170.5.2078-2082.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garcia G. A., Koch K. A., Chong S. tRNA-guanine transglycosylase from Escherichia coli. Overexpression, purification and quaternary structure. J Mol Biol. 1993 May 20;231(2):489–497. doi: 10.1006/jmbi.1993.1296. [DOI] [PubMed] [Google Scholar]
  13. Gardel C., Johnson K., Jacq A., Beckwith J. The secD locus of E.coli codes for two membrane proteins required for protein export. EMBO J. 1990 Oct;9(10):3209–3216. doi: 10.1002/j.1460-2075.1990.tb07519.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuchino Y., Kasai H., Nihei K., Nishimura S. Biosynthesis of the modified nucleoside Q in transfer RNA. Nucleic Acids Res. 1976 Feb;3(2):393–398. doi: 10.1093/nar/3.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Langgut W., Reisser T., Kersten H., Nishimura S. Modulation of epidermal growth factor receptor activity and related responses by the 7-deazaguanine derivative, queuine. Oncogene. 1993 Nov;8(11):3141–3147. [PubMed] [Google Scholar]
  17. Langgut W., Reisser T., Nishimura S., Kersten H. Modulation of mammalian cell proliferation by a modified tRNA base of bacterial origin. FEBS Lett. 1993 Dec 20;336(1):137–142. doi: 10.1016/0014-5793(93)81627-c. [DOI] [PubMed] [Google Scholar]
  18. Nakanishi S., Ueda T., Hori H., Yamazaki N., Okada N., Watanabe K. A UGU sequence in the anticodon loop is a minimum requirement for recognition by Escherichia coli tRNA-guanine transglycosylase. J Biol Chem. 1994 Dec 23;269(51):32221–32225. [PubMed] [Google Scholar]
  19. Noguchi S., Nishimura Y., Hirota Y., Nishimura S. Isolation and characterization of an Escherichia coli mutant lacking tRNA-guanine transglycosylase. Function and biosynthesis of queuosine in tRNA. J Biol Chem. 1982 Jun 10;257(11):6544–6550. [PubMed] [Google Scholar]
  20. Okada N., Nishimura S. Isolation and characterization of a guanine insertion enzyme, a specific tRNA transglycosylase, from Escherichia coli. J Biol Chem. 1979 Apr 25;254(8):3061–3066. [PubMed] [Google Scholar]
  21. Pogliano K. J., Beckwith J. Genetic and molecular characterization of the Escherichia coli secD operon and its products. J Bacteriol. 1994 Feb;176(3):804–814. doi: 10.1128/jb.176.3.804-814.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reisser T., Eicher A., Langgut W. Mitogenic stimulation of HeLa cells increases the activity of the anoxic stress protein, LDH 6/k: suppression by queuine. Biochem Biophys Res Commun. 1993 Dec 30;197(3):1319–1325. doi: 10.1006/bbrc.1993.2621. [DOI] [PubMed] [Google Scholar]
  23. Reisser T., Langgut W., Kersten H. The nutrient factor queuine protects HeLa cells from hypoxic stress and improves metabolic adaptation to oxygen availability. Eur J Biochem. 1994 May 1;221(3):979–986. doi: 10.1111/j.1432-1033.1994.tb18814.x. [DOI] [PubMed] [Google Scholar]
  24. Reuter K., Chong S., Ullrich F., Kersten H., Garcia G. A. Serine 90 is required for enzymic activity by tRNA-guanine transglycosylase from Escherichia coli. Biochemistry. 1994 Jun 14;33(23):7041–7046. doi: 10.1021/bi00189a004. [DOI] [PubMed] [Google Scholar]
  25. Reuter K., Slany R., Ullrich F., Kersten H. Structure and organization of Escherichia coli genes involved in biosynthesis of the deazaguanine derivative queuine, a nutrient factor for eukaryotes. J Bacteriol. 1991 Apr;173(7):2256–2264. doi: 10.1128/jb.173.7.2256-2264.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shark K. B., Conway T. Cloning and molecular characterization of the DNA ligase gene (lig) from Zymomonas mobilis. FEMS Microbiol Lett. 1992 Sep 1;75(1):19–26. doi: 10.1016/0378-1097(92)90450-3. [DOI] [PubMed] [Google Scholar]
  28. Shindo-Okada N., Terada M., Nishimura S. Changes in amount of hypo-modified tRNA having guanine in place of queuine during erythroid differentiation of murine erythroleukemia cells. Eur J Biochem. 1981 Apr;115(2):423–428. doi: 10.1111/j.1432-1033.1981.tb05254.x. [DOI] [PubMed] [Google Scholar]
  29. Shine J., Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975 Mar 6;254(5495):34–38. doi: 10.1038/254034a0. [DOI] [PubMed] [Google Scholar]
  30. Slany R. K., Bösl M., Crain P. F., Kersten H. A new function of S-adenosylmethionine: the ribosyl moiety of AdoMet is the precursor of the cyclopentenediol moiety of the tRNA wobble base queuine. Biochemistry. 1993 Aug 3;32(30):7811–7817. doi: 10.1021/bi00081a028. [DOI] [PubMed] [Google Scholar]
  31. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  32. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES