Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Oct;177(19):5473–5479. doi: 10.1128/jb.177.19.5473-5479.1995

Motility and thermotactic responses of Thermotoga maritima.

M F Gluch 1, D Typke 1, W Baumeister 1
PMCID: PMC177354  PMID: 7559332

Abstract

Thermotoga maritima, a thermophilic eubacterium, is motile at temperatures ranging from 50 to 105 degrees C. The cells are propelled by a single flagellum which most of the time spins clockwise. Changes in the swimming direction ("tumbles") are achieved by short reversals of the direction of filament rotation. The average speed of swimming cells depends on the temperature, reaching a maximum value of about 60 microns/s at 85 degrees C. The cells show a thermotactic response to temporal temperature changes. When the temperature is raised, the rate of tumbles is increased, while decreasing temperature decreases the tumbling rate.

Full Text

The Full Text of this article is available as a PDF (619.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armitage J. P. Behavioral responses in bacteria. Annu Rev Physiol. 1992;54:683–714. doi: 10.1146/annurev.ph.54.030192.003343. [DOI] [PubMed] [Google Scholar]
  2. Berg H. C., Brown D. A. Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Antibiot Chemother (1971) 1974;19:55–78. doi: 10.1159/000395424. [DOI] [PubMed] [Google Scholar]
  3. Kobayasi S., Maeda K., Imae Y. Apparatus for detecting rate and direction of rotation of tethered bacterial cells. Rev Sci Instrum. 1977 Apr;48(4):407–410. doi: 10.1063/1.1135033. [DOI] [PubMed] [Google Scholar]
  4. Koyasu S., Shirakihara Y. Caulobacter crescentus flagellar filament has a right-handed helical form. J Mol Biol. 1984 Feb 15;173(1):125–130. doi: 10.1016/0022-2836(84)90407-8. [DOI] [PubMed] [Google Scholar]
  5. Macnab R. M. Bacterial motility and chemotaxis: the molecular biology of a behavioral system. CRC Crit Rev Biochem. 1978;5(4):291–341. doi: 10.3109/10409237809177145. [DOI] [PubMed] [Google Scholar]
  6. Macnab R. M., Ornston M. K. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J Mol Biol. 1977 May 5;112(1):1–30. doi: 10.1016/s0022-2836(77)80153-8. [DOI] [PubMed] [Google Scholar]
  7. Maeda K., Imae Y., Shioi J. I., Oosawa F. Effect of temperature on motility and chemotaxis of Escherichia coli. J Bacteriol. 1976 Sep;127(3):1039–1046. doi: 10.1128/jb.127.3.1039-1046.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Morgan D. G., Baumgartner J. W., Hazelbauer G. L. Proteins antigenically related to methyl-accepting chemotaxis proteins of Escherichia coli detected in a wide range of bacterial species. J Bacteriol. 1993 Jan;175(1):133–140. doi: 10.1128/jb.175.1.133-140.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nara T., Lee L., Imae Y. Thermosensing ability of Trg and Tap chemoreceptors in Escherichia coli. J Bacteriol. 1991 Feb;173(3):1120–1124. doi: 10.1128/jb.173.3.1120-1124.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sager B. M., Sekelsky J. J., Matsumura P., Adler J. Use of a computer to assay motility in bacteria. Anal Biochem. 1988 Sep;173(2):271–277. doi: 10.1016/0003-2697(88)90189-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES