Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Oct;177(19):5506–5516. doi: 10.1128/jb.177.19.5506-5516.1995

Identification and characterization of genes (xapA, xapB, and xapR) involved in xanthosine catabolism in Escherichia coli.

C Seeger 1, C Poulsen 1, G Dandanell 1
PMCID: PMC177358  PMID: 7559336

Abstract

We have characterized four genes from the 52-min region on the Escherichia coli linkage map. Three of these genes are directly involved in the metabolism of xanthosine, whereas the function of the fourth gene is unknown. One of the genes (xapA) encodes xanthosine phosphorylase. The second gene, named xapB, encodes a polypeptide that shows strong similarity to the nucleoside transport protein NupG. The genes xapA and xapB are located clockwise of a gene identified as xapR, which encodes a positive regulator belonging to the LysR family and is required for the expression of xapA and xapB. The genes xapA and xapB form an operon, and their expression was strictly dependent on the presence of both the XapR protein and the inducer xanthosine. Expression of the xapR gene is constitutive and not autoregulated, unlike the case for many other LysR family proteins. In minicells, the XapB polypeptide was found primarily in the membrane fraction, indicating that XapB is a transport protein like NupG and is involved in the transport of xanthosine.

Full Text

The Full Text of this article is available as a PDF (678.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F. Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. Membrane, soluble, and periplasmic fractions. J Biol Chem. 1974 Jan 25;249(2):634–644. [PubMed] [Google Scholar]
  2. Bartolomé B., Jubete Y., Martínez E., de la Cruz F. Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene. 1991 Jun 15;102(1):75–78. doi: 10.1016/0378-1119(91)90541-i. [DOI] [PubMed] [Google Scholar]
  3. Bohannon D. E., Sonenshein A. L. Positive regulation of glutamate biosynthesis in Bacillus subtilis. J Bacteriol. 1989 Sep;171(9):4718–4727. doi: 10.1128/jb.171.9.4718-4727.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  5. Brun Y. V., Breton R., Lanouette P., Lapointe J. Precise mapping and comparison of two evolutionarily related regions of the Escherichia coli K-12 chromosome. Evolution of valU and lysT from an ancestral tRNA operon. J Mol Biol. 1990 Aug 20;214(4):825–843. doi: 10.1016/0022-2836(90)90339-N. [DOI] [PubMed] [Google Scholar]
  6. Buxton R. S. Fusion of the lac genes to the proximal promoters of the deo operon of Escherichia coli K12. J Gen Microbiol. 1979 Jun;112(2):241–250. doi: 10.1099/00221287-112-2-241. [DOI] [PubMed] [Google Scholar]
  7. Buxton R. S., Hammer-Jespersen K., Valentin-Hansen P. A second purine nucleoside phosphorylase in Escherichia coli K-12. I. Xanthosine phosphorylase regulatory mutants isolated as secondary-site revertants of a deoD mutant. Mol Gen Genet. 1980;179(2):331–340. doi: 10.1007/BF00425461. [DOI] [PubMed] [Google Scholar]
  8. Del Sal G., Manfioletti G., Schneider C. The CTAB-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques. 1989 May;7(5):514–520. [PubMed] [Google Scholar]
  9. Hammer-Jespersen K., Buxton R. S., Hansen T. D. A second purine nucleoside phosphorylase in Escherichia coli K-12. II. Properties of xanthosine phosphorylase and its induction by xanthosine. Mol Gen Genet. 1980;179(2):341–348. doi: 10.1007/BF00425462. [DOI] [PubMed] [Google Scholar]
  10. Henikoff S., Haughn G. W., Calvo J. M., Wallace J. C. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6602–6606. doi: 10.1073/pnas.85.18.6602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ikezawa Z., Nishino T., Murakami K., Tsushima K. Purine nucleoside phosphorylase from bovine liver. Comp Biochem Physiol B. 1978;60(2):111–116. doi: 10.1016/0305-0491(78)90113-x. [DOI] [PubMed] [Google Scholar]
  12. Ito K. Identification of the secY (prlA) gene product involved in protein export in Escherichia coli. Mol Gen Genet. 1984;197(2):204–208. doi: 10.1007/BF00330964. [DOI] [PubMed] [Google Scholar]
  13. Jensen K. F., Nygaard P. Purine nucleoside phosphorylase from Escherichia coli and Salmonella typhimurium. Purification and some properties. Eur J Biochem. 1975 Feb 3;51(1):253–265. doi: 10.1111/j.1432-1033.1975.tb03925.x. [DOI] [PubMed] [Google Scholar]
  14. Jensen K. F. Purine-nucleoside phosphorylase from Salmonella typhimurium and Escherichia coli. Initial velocity kinetics, ligand banding, and reaction mechanism. Eur J Biochem. 1976 Jan 15;61(2):377–386. doi: 10.1111/j.1432-1033.1976.tb10031.x. [DOI] [PubMed] [Google Scholar]
  15. Keilty S., Rosenberg M. Constitutive function of a positively regulated promoter reveals new sequences essential for activity. J Biol Chem. 1987 May 5;262(13):6389–6395. [PubMed] [Google Scholar]
  16. Kelln R. A., Neuhard J. Regulation of pyrC expression in Salmonella typhimurium: identification of a regulatory region. Mol Gen Genet. 1988 May;212(2):287–294. doi: 10.1007/BF00334698. [DOI] [PubMed] [Google Scholar]
  17. Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
  18. Koszalka G. W., Vanhooke J., Short S. A., Hall W. W. Purification and properties of inosine-guanosine phosphorylase from Escherichia coli K-12. J Bacteriol. 1988 Aug;170(8):3493–3498. doi: 10.1128/jb.170.8.3493-3498.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kushner S. R., Nagaishi H., Templin A., Clark A. J. Genetic recombination in Escherichia coli: the role of exonuclease I. Proc Natl Acad Sci U S A. 1971 Apr;68(4):824–827. doi: 10.1073/pnas.68.4.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Leer J. C., Hammer-Jespersen K., Schwartz M. Uridine phosphorylase from Escherichia coli. Physical and chemical characterization. Eur J Biochem. 1977 May 2;75(1):217–224. doi: 10.1111/j.1432-1033.1977.tb11520.x. [DOI] [PubMed] [Google Scholar]
  22. Lewis A. S., Lowy B. A. Human erythrocyte purine nucleoside phosphorylase: molecular weight and physical properties. A Theorell-Chance catalytic mechanism. J Biol Chem. 1979 Oct 10;254(19):9927–9932. [PubMed] [Google Scholar]
  23. Maloney P. C. A consensus structure for membrane transport. Res Microbiol. 1990 Mar-Apr;141(3):374–383. doi: 10.1016/0923-2508(90)90015-i. [DOI] [PubMed] [Google Scholar]
  24. Ponnambalam S., Webster C., Bingham A., Busby S. Transcription initiation at the Escherichia coli galactose operon promoters in the absence of the normal -35 region sequences. J Biol Chem. 1986 Dec 5;261(34):16043–16048. [PubMed] [Google Scholar]
  25. Reeve J. Use of minicells for bacteriophage-directed polypeptide synthesis. Methods Enzymol. 1979;68:493–503. doi: 10.1016/0076-6879(79)68038-2. [DOI] [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schell M. A. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol. 1993;47:597–626. doi: 10.1146/annurev.mi.47.100193.003121. [DOI] [PubMed] [Google Scholar]
  28. Schwartz M. Thymidine phosphorylase from Escherichia coli. Methods Enzymol. 1978;51:442–445. doi: 10.1016/s0076-6879(78)51061-6. [DOI] [PubMed] [Google Scholar]
  29. Sørensen K. I., Neuhard J. Dual transcriptional initiation sites from the pyrC promoter control expression of the gene in Salmonella typhimurium. Mol Gen Genet. 1991 Feb;225(2):249–256. doi: 10.1007/BF00269856. [DOI] [PubMed] [Google Scholar]
  30. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  31. Weiner J. H., Lohmeier E., Schryvers A. Cloning and expression of the glycerol-3-phosphate transport genes of Escherichia coli. Can J Biochem. 1978 Jun;56(6):611–617. doi: 10.1139/o78-092. [DOI] [PubMed] [Google Scholar]
  32. Westh Hansen S. E., Jensen N., Munch-Petersen A. Studies on the sequence and structure of the Escherichia coli K-12 nupG gene, encoding a nucleoside-transport system. Eur J Biochem. 1987 Oct 15;168(2):385–391. doi: 10.1111/j.1432-1033.1987.tb13431.x. [DOI] [PubMed] [Google Scholar]
  33. Williams S. R., Goddard J. M., Martin D. W., Jr Human purine nucleoside phosphorylase cDNA sequence and genomic clone characterization. Nucleic Acids Res. 1984 Jul 25;12(14):5779–5787. doi: 10.1093/nar/12.14.5779. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES