Abstract
A peptide consisting of the 17 N-terminal amino acids of native bovine rhodanese in combination with the chaperone DnaJ specifically inhibits release factor- and stop codon-dependent hydrolysis of N-formylmethionine from N(formyl)-methionyl-tRNA bound with AUG to salt-washed ribosomes. Neither the peptide nor DnaJ by itself causes this inhibition. The N-terminal peptide and DnaJ both singularly and combined do not affect the peptidyltransferase reaction per se. The total amount of rhodanese synthesized in the cell-free coupled transcription-translation system is reduced by the peptide, with concomitant accumulation of full-length enzymatically inactive rhodanese polypeptides on ribosomes. In combination with DnaJ, the N-terminal polypeptide inhibits the termination and release of full-length rhodanese peptides that have accumulated on Escherichia coli ribosomes during the course of uninhibited coupled transcription-translation in the cell-free system. This inhibition appears to involve release factor 2-mediated termination at the UGA termination codon in the coding sequence for rhodanese. It is suggested that the N-terminal peptide inhibits the binding of the release factor to ribosomes. These data appear to provide the first report of differential inhibition of the termination reaction on ribosomes without inhibition of the peptidyltransferase reaction and peptide elongation.
Full Text
The Full Text of this article is available as a PDF (216.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamski F. M., McCaughan K. K., Jørgensen F., Kurland C. G., Tate W. P. The concentration of polypeptide chain release factors 1 and 2 at different growth rates of Escherichia coli. J Mol Biol. 1994 May 6;238(3):302–308. doi: 10.1006/jmbi.1994.1293. [DOI] [PubMed] [Google Scholar]
- Caskey C. T., Tompkins R., Scolnick E., Caryk T., Nirenberg M. Sequential translation of trinucleotide codons for the initiation and termination of protein synthesis. Science. 1968 Oct 4;162(3849):135–138. doi: 10.1126/science.162.3849.135. [DOI] [PubMed] [Google Scholar]
- Donly B. C., Edgar C. D., Williams J. M., Tate W. P. Tightly controlled expression systems for the production and purification of Escherichia coli release factor 1. Biochem Int. 1990;20(3):437–443. [PubMed] [Google Scholar]
- Gu Z., Harrod R., Rogers E. J., Lovett P. S. Anti-peptidyl transferase leader peptides of attenuation-regulated chloramphenicol-resistance genes. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5612–5616. doi: 10.1073/pnas.91.12.5612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gu Z., Harrod R., Rogers E. J., Lovett P. S. Properties of a pentapeptide inhibitor of peptidyltransferase that is essential for cat gene regulation by translation attenuation. J Bacteriol. 1994 Oct;176(20):6238–6244. doi: 10.1128/jb.176.20.6238-6244.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammen P. K., Gorenstein D. G., Weiner H. Structure of the signal sequences for two mitochondrial matrix proteins that are not proteolytically processed upon import. Biochemistry. 1994 Jul 19;33(28):8610–8617. doi: 10.1021/bi00194a028. [DOI] [PubMed] [Google Scholar]
- Hol W. G., Lijk L. J., Kalk K. H. The high resolution three-dimensional structure of bovine liver rhodanese. Fundam Appl Toxicol. 1983 Sep-Oct;3(5):370–376. doi: 10.1016/s0272-0590(83)80007-4. [DOI] [PubMed] [Google Scholar]
- Kudlicki W., Kramer G., Hardesty B. High efficiency cell-free synthesis of proteins: refinement of the coupled transcription/translation system. Anal Biochem. 1992 Nov 1;206(2):389–393. doi: 10.1016/0003-2697(92)90383-i. [DOI] [PubMed] [Google Scholar]
- Kudlicki W., Mouat M., Walterscheid J. P., Kramer G., Hardesty B. Development of a chaperone-deficient system by fractionation of a prokaryotic coupled transcription/translation system. Anal Biochem. 1994 Feb 15;217(1):12–19. doi: 10.1006/abio.1994.1077. [DOI] [PubMed] [Google Scholar]
- Kudlicki W., Odom O. W., Kramer G., Hardesty B. Activation and release of enzymatically inactive, full-length rhodanese that is bound to ribosomes as peptidyl-tRNA. J Biol Chem. 1994 Jun 17;269(24):16549–16553. [PubMed] [Google Scholar]
- Kudlicki W., Odom O. W., Kramer G., Hardesty B. Chaperone-dependent folding and activation of ribosome-bound nascent rhodanese. Analysis by fluorescence. J Mol Biol. 1994 Dec 2;244(3):319–331. doi: 10.1006/jmbi.1994.1732. [DOI] [PubMed] [Google Scholar]
- Kudlicki W., Odom O. W., Kramer G., Hardesty B., Merrill G. A., Horowitz P. M. The importance of the N-terminal segment for DnaJ-mediated folding of rhodanese while bound to ribosomes as peptidyl-tRNA. J Biol Chem. 1995 May 5;270(18):10650–10657. doi: 10.1074/jbc.270.18.10650. [DOI] [PubMed] [Google Scholar]
- Lovett P. S. Nascent peptide regulation of translation. J Bacteriol. 1994 Nov;176(21):6415–6417. doi: 10.1128/jb.176.21.6415-6417.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendoza J. A., Horowitz P. M. The chaperonin assisted and unassisted refolding of rhodanese can be modulated by its N-terminal peptide. J Protein Chem. 1994 Jan;13(1):15–22. doi: 10.1007/BF01891988. [DOI] [PubMed] [Google Scholar]
- Moffat J. G., Tate W. P., Lovett P. S. The leader peptides of attenuation-regulated chloramphenicol resistance genes inhibit translational termination. J Bacteriol. 1994 Nov;176(22):7115–7117. doi: 10.1128/jb.176.22.7115-7117.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ploegman J. H., Drent G., Kalk K. H., Hol W. G., Heinrikson R. L., Keim P., Weng L., Russell J. The covalent and tertiary structure of bovine liver rhodanese. Nature. 1978 May 11;273(5658):124–129. doi: 10.1038/273124a0. [DOI] [PubMed] [Google Scholar]
