Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Oct;177(19):5582–5589. doi: 10.1128/jb.177.19.5582-5589.1995

Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. .

J Sekiguchi 1, K Akeo 1, H Yamamoto 1, F K Khasanov 1, J C Alonso 1, A Kuroda 1
PMCID: PMC177368  PMID: 7559346

Abstract

DNA sequencing of a region upstream of the mms223 gene of Bacillus subtilis showed the presence of two open reading frames, orf1 and orf2, which may encode 18- and 27-kDa polypeptides, respectively. The predicted amino acid sequence of the latter shows high similarity to a major autolysin of B. subtilis, CwlB, with 35% identity over 191 residues, as well as to other autolysins (CwlC, CwlM, and AmiB). The gene was tentatively named cwlD. Bright spores produced by a B. subtilis mutant with an insertionally inactivated cwlD gene were committed to germination by the addition of L-alanine, and spore darkening, a slow and partial decrease in A580, and 72% dipicolinic acid release compared with that of the wild-type strain were observed. However, degradation of the cortex was completely blocked. Spore germination of the cwlD mutant measured by colony formation after heat treatment was less than 3.7 x 10(-8). The germination deficiency of the cwlD mutant was only partially removed when the spores were treated with lysozyme. Analysis of the chromosomal transcription of cwlD demonstrated that a transcript (RNA2) appearing 3 h after initiation of sporulation may have originated from an internal sigma E-dependent promoter of the cwlD operon, and a longer transcript (RNA1) appearing 4.5 h after sporulation may have originated from a sigma G-dependent promoter upstream of the orf1 gene. The cwlD mutant harboring a B. subtilis vector plasmid containing the intact cwlD gene recovered germination at a frequency 26% of the wild-type level.

Full Text

The Full Text of this article is available as a PDF (524.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso J. C., Stiege A. C., Lüder G. Genetic recombination in Bacillus subtilis 168: effect of recN, recF, recH and addAB mutations on DNA repair and recombination. Mol Gen Genet. 1993 May;239(1-2):129–136. doi: 10.1007/BF00281611. [DOI] [PubMed] [Google Scholar]
  2. Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  4. Foster S. J. Analysis of Bacillus subtilis 168 prophage-associated lytic enzymes; identification and characterization of CWLA-related prophage proteins. J Gen Microbiol. 1993 Dec;139(12):3177–3184. doi: 10.1099/00221287-139-12-3177. [DOI] [PubMed] [Google Scholar]
  5. Foster S. J. Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis. J Bacteriol. 1992 Jan;174(2):464–470. doi: 10.1128/jb.174.2.464-470.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Foster S. J. Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J Gen Microbiol. 1991 Aug;137(8):1987–1998. doi: 10.1099/00221287-137-8-1987. [DOI] [PubMed] [Google Scholar]
  7. Foster S. J., Johnstone K. Germination-specific cortex-lytic enzyme is activated during triggering of Bacillus megaterium KM spore germination. Mol Microbiol. 1988 Nov;2(6):727–733. doi: 10.1111/j.1365-2958.1988.tb00083.x. [DOI] [PubMed] [Google Scholar]
  8. Foster S. J., Johnstone K. Purification and properties of a germination-specific cortex-lytic enzyme from spores of Bacillus megaterium KM. Biochem J. 1987 Mar 1;242(2):573–579. doi: 10.1042/bj2420573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gavrilova E. V., Khasanov F. K., Prozorov A. A. Poluchenie Rec-mutantov Bacillus subtilis s pomoshch'iu insertsionnogo mutageneza. Genetika. 1991 Feb;27(2):222–228. [PubMed] [Google Scholar]
  10. Gavrilova E. V., Mekhedov S. L., Prozorov A. A., Khasanov F. K. Gen rec223 Bacillus subtilis: molekuliarnoe klonirovanie i predpolagaemye funktsii ego belkovogo produkta. Genetika. 1992 May;28(5):29–39. [PubMed] [Google Scholar]
  11. Guinand M., Michel G., Balassa G. Lytic enzymes in sporulating Bacillus subtilis. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1287–1293. doi: 10.1016/0006-291x(76)90336-3. [DOI] [PubMed] [Google Scholar]
  12. Herbold D. R., Glaser L. Bacillus subtilis N-acetylmuramic acid L-alanine amidase. J Biol Chem. 1975 Mar 10;250(5):1676–1682. [PubMed] [Google Scholar]
  13. Illades-Aguiar B., Setlow P. Studies of the processing of the protease which initiates degradation of small, acid-soluble proteins during germination of spores of Bacillus species. J Bacteriol. 1994 May;176(10):2788–2795. doi: 10.1128/jb.176.10.2788-2795.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Karmazyn-Campelli C., Bonamy C., Savelli B., Stragier P. Tandem genes encoding sigma-factors for consecutive steps of development in Bacillus subtilis. Genes Dev. 1989 Feb;3(2):150–157. doi: 10.1101/gad.3.2.150. [DOI] [PubMed] [Google Scholar]
  15. Kuroda A., Asami Y., Sekiguchi J. Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis. J Bacteriol. 1993 Oct;175(19):6260–6268. doi: 10.1128/jb.175.19.6260-6268.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuroda A., Rashid M. H., Sekiguchi J. Molecular cloning and sequencing of the upstream region of the major Bacillus subtilis autolysin gene: a modifier protein exhibiting sequence homology to the major autolysin and the spoIID product. J Gen Microbiol. 1992 Jun;138(6):1067–1076. doi: 10.1099/00221287-138-6-1067. [DOI] [PubMed] [Google Scholar]
  17. Kuroda A., Sekiguchi J. Characterization of the Bacillus subtilis CwbA protein which stimulates cell wall lytic amidases. FEMS Microbiol Lett. 1992 Aug 1;74(1):109–113. doi: 10.1016/0378-1097(92)90745-a. [DOI] [PubMed] [Google Scholar]
  18. Kuroda A., Sekiguchi J. Cloning, sequencing and genetic mapping of a Bacillus subtilis cell wall hydrolase gene. J Gen Microbiol. 1990 Nov;136(11):2209–2216. doi: 10.1099/00221287-136-11-2209. [DOI] [PubMed] [Google Scholar]
  19. Kuroda A., Sekiguchi J. High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin (flaD) mutation. J Bacteriol. 1993 Feb;175(3):795–801. doi: 10.1128/jb.175.3.795-801.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuroda A., Sekiguchi J. Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J Bacteriol. 1991 Nov;173(22):7304–7312. doi: 10.1128/jb.173.22.7304-7312.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kuroda A., Sugimoto Y., Funahashi T., Sekiguchi J. Genetic structure, isolation and characterization of a Bacillus licheniformis cell wall hydrolase. Mol Gen Genet. 1992 Jul;234(1):129–137. doi: 10.1007/BF00272354. [DOI] [PubMed] [Google Scholar]
  22. Lazarevic V., Margot P., Soldo B., Karamata D. Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J Gen Microbiol. 1992 Sep;138(9):1949–1961. doi: 10.1099/00221287-138-9-1949. [DOI] [PubMed] [Google Scholar]
  23. Longchamp P. F., Mauël C., Karamata D. Lytic enzymes associated with defective prophages of Bacillus subtilis: sequencing and characterization of the region comprising the N-acetylmuramoyl-L-alanine amidase gene of prophage PBSX. Microbiology. 1994 Aug;140(Pt 8):1855–1867. doi: 10.1099/13500872-140-8-1855. [DOI] [PubMed] [Google Scholar]
  24. Makino S., Ito N., Inoue T., Miyata S., Moriyama R. A spore-lytic enzyme released from Bacillus cereus spores during germination. Microbiology. 1994 Jun;140(Pt 6):1403–1410. doi: 10.1099/00221287-140-6-1403. [DOI] [PubMed] [Google Scholar]
  25. Margot P., Mauël C., Karamata D. The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol. 1994 May;12(4):535–545. doi: 10.1111/j.1365-2958.1994.tb01040.x. [DOI] [PubMed] [Google Scholar]
  26. Miki T., Yasukochi T., Nagatani H., Furuno M., Orita T., Yamada H., Imoto T., Horiuchi T. Construction of a plasmid vector for the regulatable high level expression of eukaryotic genes in Escherichia coli: an application to overproduction of chicken lysozyme. Protein Eng. 1987 Aug-Sep;1(4):327–332. doi: 10.1093/protein/1.4.327. [DOI] [PubMed] [Google Scholar]
  27. Nicholson W. L., Sun D. X., Setlow B., Setlow P. Promoter specificity of sigma G-containing RNA polymerase from sporulating cells of Bacillus subtilis: identification of a group of forespore-specific promoters. J Bacteriol. 1989 May;171(5):2708–2718. doi: 10.1128/jb.171.5.2708-2718.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oda Y., Nakayama R., Kuroda A., Sekiguchi J. Molecular cloning, sequence analysis, and characterization of a new cell wall hydrolase, CwlL, of Bacillus licheniformis. Mol Gen Genet. 1993 Nov;241(3-4):380–388. doi: 10.1007/BF00284691. [DOI] [PubMed] [Google Scholar]
  29. Pabo C. O., Sauer R. T. Protein-DNA recognition. Annu Rev Biochem. 1984;53:293–321. doi: 10.1146/annurev.bi.53.070184.001453. [DOI] [PubMed] [Google Scholar]
  30. Parquet C., Flouret B., Leduc M., Hirota Y., van Heijenoort J. N-acetylmuramoyl-L-alanine amidase of Escherichia coli K12. Possible physiological functions. Eur J Biochem. 1983 Jun 15;133(2):371–377. doi: 10.1111/j.1432-1033.1983.tb07472.x. [DOI] [PubMed] [Google Scholar]
  31. Potvin C., Leclerc D., Tremblay G., Asselin A., Bellemare G. Cloning, sequencing and expression of a Bacillus bacteriolytic enzyme in Escherichia coli. Mol Gen Genet. 1988 Oct;214(2):241–248. doi: 10.1007/BF00337717. [DOI] [PubMed] [Google Scholar]
  32. Rashid M. H., Kuroda A., Sekiguchi J. Bacillus subtilis mutant deficient in the major autolytic amidase and glucosaminidase is impaired in motility. FEMS Microbiol Lett. 1993 Sep 1;112(2):135–140. doi: 10.1111/j.1574-6968.1993.tb06438.x. [DOI] [PubMed] [Google Scholar]
  33. Roels S., Driks A., Losick R. Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. J Bacteriol. 1992 Jan;174(2):575–585. doi: 10.1128/jb.174.2.575-585.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schaeffer P., Millet J., Aubert J. P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. doi: 10.1073/pnas.54.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thompson J. S., Shockman G. D. A modification of the Park and Johnson reducing sugar determination suitable for the assay of insoluble materials: its application to bacterial cell walls. Anal Biochem. 1968 Feb;22(2):260–268. doi: 10.1016/0003-2697(68)90315-1. [DOI] [PubMed] [Google Scholar]
  36. Tomioka S., Nikaido T., Miyakawa T., Matsuhashi M. Mutation of the N-acetylmuramyl-L-alanine amidase gene of Escherichia coli K-12. J Bacteriol. 1983 Oct;156(1):463–465. doi: 10.1128/jb.156.1.463-465.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Troup B., Jahn M., Hungerer C., Jahn D. Isolation of the hemF operon containing the gene for the Escherichia coli aerobic coproporphyrinogen III oxidase by in vivo complementation of a yeast HEM13 mutant. J Bacteriol. 1994 Feb;176(3):673–680. doi: 10.1128/jb.176.3.673-680.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tsui H. C., Zhao G., Feng G., Leung H. C., Winkler M. E. The mutL repair gene of Escherichia coli K-12 forms a superoperon with a gene encoding a new cell-wall amidase. Mol Microbiol. 1994 Jan;11(1):189–202. doi: 10.1111/j.1365-2958.1994.tb00300.x. [DOI] [PubMed] [Google Scholar]
  39. Xu K., Elliott T. An oxygen-dependent coproporphyrinogen oxidase encoded by the hemF gene of Salmonella typhimurium. J Bacteriol. 1993 Aug;175(16):4990–4999. doi: 10.1128/jb.175.16.4990-4999.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yon J. R., Sammons R. L., Smith D. A. Cloning and sequencing of the gerD gene of Bacillus subtilis. J Gen Microbiol. 1989 Dec;135(12):3431–3445. doi: 10.1099/00221287-135-12-3431. [DOI] [PubMed] [Google Scholar]
  41. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES