Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Oct;177(20):5778–5783. doi: 10.1128/jb.177.20.5778-5783.1995

Anaerobic protoporphyrin biosynthesis does not require incorporation of methyl groups from methionine.

D W Bollivar 1, T Elliott 1, S I Beale 1
PMCID: PMC177398  PMID: 7592323

Abstract

It was recently reported (H. Akutsu, J.-S. Park, and S. Sano, J. Am. Chem. Soc. 115:12185-12186, 1993) that in the strict anaerobe Desulfovibrio vulgaris methyl groups from exogenous L-methionine are incorporated specifically into the 1 and 3 positions (Fischer numbering system) on the heme groups of cytochrome c3. It was suggested that under anaerobic conditions, protoporphyrin IX biosynthesis proceeds via a novel pathway that does not involve coproporphyrinogen III as a precursor but instead may use precorrin-2 (1,3-dimethyluroporphyrinogen III), a siroheme and vitamin B12 precursor which is known to be derived from uroporphyrinogen III via methyl transfer from S-adenosyl-L-methionine. We have critically tested this hypothesis by examining the production of protoporphyrin IX-based tetrapyrroles in the presence of exogenous [14C]methyl-L-methionine under anaerobic conditions in a strict anaerobe (Chlorobium vibrioforme) and a facultative anaerobe (Rhodobacter capsulatus). In both organisms, 14C was incorporated into the bacteriochlorophyll precursor, Mg-protoporphyrin IX monomethyl ester. However, most of the label was lost upon base hydrolysis of this compound to yield Mg-protoporphyrin IX. These results indicate that although the administered [14C]methyl-L-methionine was taken up, converted into S-adenosyl-L-methionine, and used for methyl transfer reactions, including methylation of the 6-propionate of Mg-protoporphyrin IX, methyl groups were not transferred to the porphyrin nucleus of Mg-protoporphyrin IX. In other experiments, a cysG strain of Salmonella typhimurium, which cannot synthesize precorrin-2 because the gene encoding the enzyme that catalyzes methylation of uroporphyrinogen III at positions 1 and 3 is disrupted, was capable of heme-dependent anaerobic nitrate respiration and growth on the nonfermentable substrate glycerol, indicating that anaerobic biosynthesis of protoporphyrin IX-based hemes does not require the ability to methylate uroporphyrinogen III. Together, these results indicate that incorporation of L-methionine-deprived methyl groups into porphyrins or their precursors is not generally necessary for the anaerobic biosynthesis of protoporphyrin IX-based tetrapyrroles.

Full Text

The Full Text of this article is available as a PDF (233.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett E. L., Chang G. W. Cysteine auxotrophs of Salmonella typhimurium which grow without cysteine in a hydrogen/carbon dioxide atmosphere. J Gen Microbiol. 1979 Dec;115(2):513–516. doi: 10.1099/00221287-115-2-513. [DOI] [PubMed] [Google Scholar]
  2. Berkowitz D., Hushon J. M., Whitfield H. J., Jr, Roth J., Ames B. N. Procedure for identifying nonsense mutations. J Bacteriol. 1968 Jul;96(1):215–220. doi: 10.1128/jb.96.1.215-220.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bollivar D. W., Suzuki J. Y., Beatty J. T., Dobrowolski J. M., Bauer C. E. Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol. 1994 Apr 15;237(5):622–640. doi: 10.1006/jmbi.1994.1260. [DOI] [PubMed] [Google Scholar]
  4. Chereskin B. M., Castelfranco P. A. Effects of Iron and Oxygen on Chlorophyll Biosynthesis : II. OBSERVATIONS ON THE BIOSYNTHETIC PATHWAY IN ISOLATED ETIOCHLOROPLASTS. Plant Physiol. 1982 Jan;69(1):112–116. doi: 10.1104/pp.69.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ehteshamuddin A. F. Anaerobic formation of protoporphyrin IX from coproporphyrinogen III by bacterial preparations. Biochem J. 1968 Apr;107(3):446–447. doi: 10.1042/bj1070446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuesler T. P., Hanamoto C. M., Castelfranco P. A. Separation of Mg-Protoporphyrin IX and Mg-Protoporphyrin IX Monomethyl Ester Synthesized de novo by Developing Cucumber Etioplasts. Plant Physiol. 1982 Feb;69(2):421–423. doi: 10.1104/pp.69.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldman B. S., Roth J. R. Genetic structure and regulation of the cysG gene in Salmonella typhimurium. J Bacteriol. 1993 Mar;175(5):1457–1466. doi: 10.1128/jb.175.5.1457-1466.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Madigan M. T., Gest H. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol. 1979 Jan;137(1):524–530. doi: 10.1128/jb.137.1.524-530.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Madigan M., Cox J. C., Gest H. Photopigments in Rhodopseudomonas capsulata cells grown anaerobically in darkness. J Bacteriol. 1982 Jun;150(3):1422–1429. doi: 10.1128/jb.150.3.1422-1429.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McConville M. L., Charles H. P. Isolation of haemin-requiring mutants of Escherichia coli K12. J Gen Microbiol. 1979 Jul;113(1):155–164. doi: 10.1099/00221287-113-1-155. [DOI] [PubMed] [Google Scholar]
  11. Nishimura K., Nakayashiki T., Inokuchi H. Cloning and sequencing of the hemE gene encoding uroporphyrinogen III decarboxylase (UPD) from Escherichia coli K-12. Gene. 1993 Oct 29;133(1):109–113. doi: 10.1016/0378-1119(93)90233-s. [DOI] [PubMed] [Google Scholar]
  12. Ormerod J. G., Nesbakken T., Beale S. I. Specific inhibition of antenna bacteriochlorophyll synthesis in Chlorobium vibrioforme by anesthetic gases. J Bacteriol. 1990 Mar;172(3):1352–1360. doi: 10.1128/jb.172.3.1352-1360.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Poulson R., Polglase W. J. Aerobic and anaerobic coproporphyrinogenase activities in extracts from Saccharomyces cerevisiae. J Biol Chem. 1974 Oct 25;249(20):6367–6371. [PubMed] [Google Scholar]
  14. Rieble S., Ormerod J. G., Beale S. I. Transformation of glutamate to delta-aminolevulinic acid by soluble extracts of Chlorobium vibrioforme. J Bacteriol. 1989 Jul;171(7):3782–3787. doi: 10.1128/jb.171.7.3782-3787.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Seehra J. S., Jordan P. M., Akhtar M. Anaerobic and aerobic coproporphyrinogen III oxidases of Rhodopseudomonas spheroides. Mechanism and stereochemistry of vinyl group formation. Biochem J. 1983 Mar 1;209(3):709–718. doi: 10.1042/bj2090709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sirevåg R., Ormerod J. G. Carbon dioxide fixation in green sulphur bacteria. Biochem J. 1970 Nov;120(2):399–408. doi: 10.1042/bj1200399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spencer J. B., Stolowich N. J., Roessner C. A., Scott A. I. The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett. 1993 Nov 29;335(1):57–60. doi: 10.1016/0014-5793(93)80438-z. [DOI] [PubMed] [Google Scholar]
  18. Tait G. H. Coproporphyrinogenase activities in extracts of Rhodopseudomonas spheroides and Chromatium strain D. Biochem J. 1972 Aug;128(5):1159–1169. doi: 10.1042/bj1281159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Troup B., Hungerer C., Jahn D. Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase. J Bacteriol. 1995 Jun;177(11):3326–3331. doi: 10.1128/jb.177.11.3326-3331.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Warren M. J., Bolt E. L., Roessner C. A., Scott A. I., Spencer J. B., Woodcock S. C. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem J. 1994 Sep 15;302(Pt 3):837–844. doi: 10.1042/bj3020837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Warren M. J., Roessner C. A., Santander P. J., Scott A. I. The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. Biochem J. 1990 Feb 1;265(3):725–729. doi: 10.1042/bj2650725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Xu K., Delling J., Elliott T. The genes required for heme synthesis in Salmonella typhimurium include those encoding alternative functions for aerobic and anaerobic coproporphyrinogen oxidation. J Bacteriol. 1992 Jun;174(12):3953–3963. doi: 10.1128/jb.174.12.3953-3963.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Xu K., Elliott T. An oxygen-dependent coproporphyrinogen oxidase encoded by the hemF gene of Salmonella typhimurium. J Bacteriol. 1993 Aug;175(16):4990–4999. doi: 10.1128/jb.175.16.4990-4999.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Xu K., Elliott T. Cloning, DNA sequence, and complementation analysis of the Salmonella typhimurium hemN gene encoding a putative oxygen-independent coproporphyrinogen III oxidase. J Bacteriol. 1994 Jun;176(11):3196–3203. doi: 10.1128/jb.176.11.3196-3203.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yap-Bondoc F., Bondoc L. L., Timkovich R., Baker D. C., Hebbler A. C-methylation occurs during the biosynthesis of heme d1. J Biol Chem. 1990 Aug 15;265(23):13498–13500. [PubMed] [Google Scholar]
  26. Young D. A., Bauer C. E., Williams J. C., Marrs B. L. Genetic evidence for superoperonal organization of genes for photosynthetic pigments and pigment-binding proteins in Rhodobacter capsulatus. Mol Gen Genet. 1989 Jul;218(1):1–12. doi: 10.1007/BF00330558. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES