Abstract
It was recently reported (H. Akutsu, J.-S. Park, and S. Sano, J. Am. Chem. Soc. 115:12185-12186, 1993) that in the strict anaerobe Desulfovibrio vulgaris methyl groups from exogenous L-methionine are incorporated specifically into the 1 and 3 positions (Fischer numbering system) on the heme groups of cytochrome c3. It was suggested that under anaerobic conditions, protoporphyrin IX biosynthesis proceeds via a novel pathway that does not involve coproporphyrinogen III as a precursor but instead may use precorrin-2 (1,3-dimethyluroporphyrinogen III), a siroheme and vitamin B12 precursor which is known to be derived from uroporphyrinogen III via methyl transfer from S-adenosyl-L-methionine. We have critically tested this hypothesis by examining the production of protoporphyrin IX-based tetrapyrroles in the presence of exogenous [14C]methyl-L-methionine under anaerobic conditions in a strict anaerobe (Chlorobium vibrioforme) and a facultative anaerobe (Rhodobacter capsulatus). In both organisms, 14C was incorporated into the bacteriochlorophyll precursor, Mg-protoporphyrin IX monomethyl ester. However, most of the label was lost upon base hydrolysis of this compound to yield Mg-protoporphyrin IX. These results indicate that although the administered [14C]methyl-L-methionine was taken up, converted into S-adenosyl-L-methionine, and used for methyl transfer reactions, including methylation of the 6-propionate of Mg-protoporphyrin IX, methyl groups were not transferred to the porphyrin nucleus of Mg-protoporphyrin IX. In other experiments, a cysG strain of Salmonella typhimurium, which cannot synthesize precorrin-2 because the gene encoding the enzyme that catalyzes methylation of uroporphyrinogen III at positions 1 and 3 is disrupted, was capable of heme-dependent anaerobic nitrate respiration and growth on the nonfermentable substrate glycerol, indicating that anaerobic biosynthesis of protoporphyrin IX-based hemes does not require the ability to methylate uroporphyrinogen III. Together, these results indicate that incorporation of L-methionine-deprived methyl groups into porphyrins or their precursors is not generally necessary for the anaerobic biosynthesis of protoporphyrin IX-based tetrapyrroles.
Full Text
The Full Text of this article is available as a PDF (233.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett E. L., Chang G. W. Cysteine auxotrophs of Salmonella typhimurium which grow without cysteine in a hydrogen/carbon dioxide atmosphere. J Gen Microbiol. 1979 Dec;115(2):513–516. doi: 10.1099/00221287-115-2-513. [DOI] [PubMed] [Google Scholar]
- Berkowitz D., Hushon J. M., Whitfield H. J., Jr, Roth J., Ames B. N. Procedure for identifying nonsense mutations. J Bacteriol. 1968 Jul;96(1):215–220. doi: 10.1128/jb.96.1.215-220.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bollivar D. W., Suzuki J. Y., Beatty J. T., Dobrowolski J. M., Bauer C. E. Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol. 1994 Apr 15;237(5):622–640. doi: 10.1006/jmbi.1994.1260. [DOI] [PubMed] [Google Scholar]
- Chereskin B. M., Castelfranco P. A. Effects of Iron and Oxygen on Chlorophyll Biosynthesis : II. OBSERVATIONS ON THE BIOSYNTHETIC PATHWAY IN ISOLATED ETIOCHLOROPLASTS. Plant Physiol. 1982 Jan;69(1):112–116. doi: 10.1104/pp.69.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehteshamuddin A. F. Anaerobic formation of protoporphyrin IX from coproporphyrinogen III by bacterial preparations. Biochem J. 1968 Apr;107(3):446–447. doi: 10.1042/bj1070446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuesler T. P., Hanamoto C. M., Castelfranco P. A. Separation of Mg-Protoporphyrin IX and Mg-Protoporphyrin IX Monomethyl Ester Synthesized de novo by Developing Cucumber Etioplasts. Plant Physiol. 1982 Feb;69(2):421–423. doi: 10.1104/pp.69.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman B. S., Roth J. R. Genetic structure and regulation of the cysG gene in Salmonella typhimurium. J Bacteriol. 1993 Mar;175(5):1457–1466. doi: 10.1128/jb.175.5.1457-1466.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madigan M. T., Gest H. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol. 1979 Jan;137(1):524–530. doi: 10.1128/jb.137.1.524-530.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madigan M., Cox J. C., Gest H. Photopigments in Rhodopseudomonas capsulata cells grown anaerobically in darkness. J Bacteriol. 1982 Jun;150(3):1422–1429. doi: 10.1128/jb.150.3.1422-1429.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConville M. L., Charles H. P. Isolation of haemin-requiring mutants of Escherichia coli K12. J Gen Microbiol. 1979 Jul;113(1):155–164. doi: 10.1099/00221287-113-1-155. [DOI] [PubMed] [Google Scholar]
- Nishimura K., Nakayashiki T., Inokuchi H. Cloning and sequencing of the hemE gene encoding uroporphyrinogen III decarboxylase (UPD) from Escherichia coli K-12. Gene. 1993 Oct 29;133(1):109–113. doi: 10.1016/0378-1119(93)90233-s. [DOI] [PubMed] [Google Scholar]
- Ormerod J. G., Nesbakken T., Beale S. I. Specific inhibition of antenna bacteriochlorophyll synthesis in Chlorobium vibrioforme by anesthetic gases. J Bacteriol. 1990 Mar;172(3):1352–1360. doi: 10.1128/jb.172.3.1352-1360.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poulson R., Polglase W. J. Aerobic and anaerobic coproporphyrinogenase activities in extracts from Saccharomyces cerevisiae. J Biol Chem. 1974 Oct 25;249(20):6367–6371. [PubMed] [Google Scholar]
- Rieble S., Ormerod J. G., Beale S. I. Transformation of glutamate to delta-aminolevulinic acid by soluble extracts of Chlorobium vibrioforme. J Bacteriol. 1989 Jul;171(7):3782–3787. doi: 10.1128/jb.171.7.3782-3787.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seehra J. S., Jordan P. M., Akhtar M. Anaerobic and aerobic coproporphyrinogen III oxidases of Rhodopseudomonas spheroides. Mechanism and stereochemistry of vinyl group formation. Biochem J. 1983 Mar 1;209(3):709–718. doi: 10.1042/bj2090709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirevåg R., Ormerod J. G. Carbon dioxide fixation in green sulphur bacteria. Biochem J. 1970 Nov;120(2):399–408. doi: 10.1042/bj1200399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spencer J. B., Stolowich N. J., Roessner C. A., Scott A. I. The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett. 1993 Nov 29;335(1):57–60. doi: 10.1016/0014-5793(93)80438-z. [DOI] [PubMed] [Google Scholar]
- Tait G. H. Coproporphyrinogenase activities in extracts of Rhodopseudomonas spheroides and Chromatium strain D. Biochem J. 1972 Aug;128(5):1159–1169. doi: 10.1042/bj1281159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Troup B., Hungerer C., Jahn D. Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase. J Bacteriol. 1995 Jun;177(11):3326–3331. doi: 10.1128/jb.177.11.3326-3331.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren M. J., Bolt E. L., Roessner C. A., Scott A. I., Spencer J. B., Woodcock S. C. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem J. 1994 Sep 15;302(Pt 3):837–844. doi: 10.1042/bj3020837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren M. J., Roessner C. A., Santander P. J., Scott A. I. The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. Biochem J. 1990 Feb 1;265(3):725–729. doi: 10.1042/bj2650725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu K., Delling J., Elliott T. The genes required for heme synthesis in Salmonella typhimurium include those encoding alternative functions for aerobic and anaerobic coproporphyrinogen oxidation. J Bacteriol. 1992 Jun;174(12):3953–3963. doi: 10.1128/jb.174.12.3953-3963.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu K., Elliott T. An oxygen-dependent coproporphyrinogen oxidase encoded by the hemF gene of Salmonella typhimurium. J Bacteriol. 1993 Aug;175(16):4990–4999. doi: 10.1128/jb.175.16.4990-4999.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu K., Elliott T. Cloning, DNA sequence, and complementation analysis of the Salmonella typhimurium hemN gene encoding a putative oxygen-independent coproporphyrinogen III oxidase. J Bacteriol. 1994 Jun;176(11):3196–3203. doi: 10.1128/jb.176.11.3196-3203.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yap-Bondoc F., Bondoc L. L., Timkovich R., Baker D. C., Hebbler A. C-methylation occurs during the biosynthesis of heme d1. J Biol Chem. 1990 Aug 15;265(23):13498–13500. [PubMed] [Google Scholar]
- Young D. A., Bauer C. E., Williams J. C., Marrs B. L. Genetic evidence for superoperonal organization of genes for photosynthetic pigments and pigment-binding proteins in Rhodobacter capsulatus. Mol Gen Genet. 1989 Jul;218(1):1–12. doi: 10.1007/BF00330558. [DOI] [PubMed] [Google Scholar]