Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Oct;177(20):5853–5859. doi: 10.1128/jb.177.20.5853-5859.1995

Electron transport-dependent taxis in Rhodobacter sphaeroides.

D E Gauden 1, J P Armitage 1
PMCID: PMC177409  PMID: 7592334

Abstract

Rhodobacter sphaeroides showed chemotaxis to the terminal electron acceptors oxygen and dimethyl sulfoxide, and the responses to these effectors were shown to be influenced by the relative activities of the different electron transport pathways. R. sphaeroides cells tethered by their flagella showed a step-down response to a decrease in the oxygen or dimethyl sulfoxide concentration when using them as terminal acceptors. Bacteria using photosynthetic electron transport, however, showed a step-down response to oxygen addition. Addition of the proton ionophore carbonyl cyanide 4-trifluoromethoxyphenylhydrazone did not cause a transient behavioral response, although it decreased the electrochemical proton gradient (delta p) and increased the rate of electron transport. However, removal of the ionophore, which caused an increase in delta p and a decrease in the electron transport rate, resulted in a step-down response. Together, these data suggest that behavioral responses of R. sphaeroides to electron transport effectors are caused by changes in the rate of electron transport rather than changes in delta p.

Full Text

The Full Text of this article is available as a PDF (701.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armitage J. P., Ingham C., Evans M. C. Role of proton motive force in phototactic and aerotactic responses of Rhodopseudomonas sphaeroides. J Bacteriol. 1985 Mar;161(3):967–972. doi: 10.1128/jb.161.3.967-972.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BOSE S. K., GEST H. Bacterial photophosphorylation: regulation by redox balance. Proc Natl Acad Sci U S A. 1963 Mar 15;49:337–345. doi: 10.1073/pnas.49.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg H. C., Block S. M. A miniature flow cell designed for rapid exchange of media under high-power microscope objectives. J Gen Microbiol. 1984 Nov;130(11):2915–2920. doi: 10.1099/00221287-130-11-2915. [DOI] [PubMed] [Google Scholar]
  4. Block S. M., Segall J. E., Berg H. C. Adaptation kinetics in bacterial chemotaxis. J Bacteriol. 1983 Apr;154(1):312–323. doi: 10.1128/jb.154.1.312-323.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CLAYTON R. K. On the interplay of environmental factors affecting taxis and motility in Rhodospirillum rubrum. Arch Mikrobiol. 1958;29(2):189–212. doi: 10.1007/BF00409860. [DOI] [PubMed] [Google Scholar]
  6. CLAYTON R. K. Patterns of accumulation resulting from taxes and changes in motility of micro-organisms. Arch Mikrobiol. 1957;27(3):311–319. doi: 10.1007/BF00409531. [DOI] [PubMed] [Google Scholar]
  7. CLAYTON R. K. The induced synthesis of catalase in Rhodopseudomonas spheroides. Biochim Biophys Acta. 1960 Jan 29;37:503–512. doi: 10.1016/0006-3002(60)90507-2. [DOI] [PubMed] [Google Scholar]
  8. Clark A. J., Jackson J. B. The measurement of membrane potential during photosynthesis and during respiration in intact cells of Rhodopseudomonas capsulata by both electrochromism and by permeant ion redistribution. Biochem J. 1981 Nov 15;200(2):389–397. doi: 10.1042/bj2000389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cotton N. P., Clark A. J., Jackson J. B. Interaction between the respiratory and photosynthetic electron transport chains of intact cells of Rhodopseudomonas capsulata mediated by membrane potential. Eur J Biochem. 1983 Feb 15;130(3):581–587. doi: 10.1111/j.1432-1033.1983.tb07189.x. [DOI] [PubMed] [Google Scholar]
  10. Culbert-Runquist J. A., Hadsell R. M., Loach P. A. Dependency on environmental redox potential of photophosphorylation in Rhodopseudomonas spheroides. Biochemistry. 1973 Aug 28;12(18):3508–3514. doi: 10.1021/bi00742a025. [DOI] [PubMed] [Google Scholar]
  11. Fu R., Wall J. D., Voordouw G. DcrA, a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment. J Bacteriol. 1994 Jan;176(2):344–350. doi: 10.1128/jb.176.2.344-350.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harrison D. M., Packer H. L., Armitage J. P. Swimming speed and chemokinetic response of Rhodobacter sphaeroides investigated by natural manipulation of the membrane potential. FEBS Lett. 1994 Jul 4;348(1):37–40. doi: 10.1016/0014-5793(94)00572-9. [DOI] [PubMed] [Google Scholar]
  13. Ingham C. J., Armitage J. P. Involvement of transport in Rhodobacter sphaeroides chemotaxis. J Bacteriol. 1987 Dec;169(12):5801–5807. doi: 10.1128/jb.169.12.5801-5807.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jackson J. B., Crofts A. R. The high energy state in chromatophores from Rhodopseudomonas spheroides. FEBS Lett. 1969 Aug;4(3):185–189. doi: 10.1016/0014-5793(69)80230-9. [DOI] [PubMed] [Google Scholar]
  15. La Monica R. F., Marrs B. L. The branched respiratory system of photosynthetically grown Rhodopseudomonas capsulata. Biochim Biophys Acta. 1976 Mar 12;423(3):431–439. doi: 10.1016/0005-2728(76)90198-5. [DOI] [PubMed] [Google Scholar]
  16. Laszlo D. J., Niwano M., Goral W. W., Taylor B. L. Bacillus cereus electron transport and proton motive force during aerotaxis. J Bacteriol. 1984 Sep;159(3):820–824. doi: 10.1128/jb.159.3.820-824.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lois A. F., Weinstein M., Ditta G. S., Helinski D. R. Autophosphorylation and phosphatase activities of the oxygen-sensing protein FixL of Rhizobium meliloti are coordinately regulated by oxygen. J Biol Chem. 1993 Feb 25;268(6):4370–4375. [PubMed] [Google Scholar]
  18. Mosley C. S., Suzuki J. Y., Bauer C. E. Identification and molecular genetic characterization of a sensor kinase responsible for coordinately regulating light harvesting and reaction center gene expression in response to anaerobiosis. J Bacteriol. 1994 Dec;176(24):7566–7573. doi: 10.1128/jb.176.24.7566-7573.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Niwano M., Taylor B. L. Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates. Proc Natl Acad Sci U S A. 1982 Jan;79(1):11–15. doi: 10.1073/pnas.79.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Packer H. L., Armitage J. P. The chemokinetic and chemotactic behavior of Rhodobacter sphaeroides: two independent responses. J Bacteriol. 1994 Jan;176(1):206–212. doi: 10.1128/jb.176.1.206-212.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Poole P. S., Sinclair D. R., Armitage J. P. Real time computer tracking of free-swimming and tethered rotating cells. Anal Biochem. 1988 Nov 15;175(1):52–58. doi: 10.1016/0003-2697(88)90359-4. [DOI] [PubMed] [Google Scholar]
  22. Shioi J., Taylor B. L. Oxygen taxis and proton motive force in Salmonella typhimurium. J Biol Chem. 1984 Sep 10;259(17):10983–10988. [PubMed] [Google Scholar]
  23. Spiro S., Guest J. R. Adaptive responses to oxygen limitation in Escherichia coli. Trends Biochem Sci. 1991 Aug;16(8):310–314. doi: 10.1016/0968-0004(91)90125-f. [DOI] [PubMed] [Google Scholar]
  24. Taylor B. L. Role of proton motive force in sensory transduction in bacteria. Annu Rev Microbiol. 1983;37:551–573. doi: 10.1146/annurev.mi.37.100183.003003. [DOI] [PubMed] [Google Scholar]
  25. Ward M. J., Bell A. W., Hamblin P. A., Packer H. L., Armitage J. P. Identification of a chemotaxis operon with two cheY genes in Rhodobacter sphaeroides. Mol Microbiol. 1995 Jul;17(2):357–366. doi: 10.1111/j.1365-2958.1995.mmi_17020357.x. [DOI] [PubMed] [Google Scholar]
  26. Wong L. S., Johnson M. S., Zhulin I. B., Taylor B. L. Role of methylation in aerotaxis in Bacillus subtilis. J Bacteriol. 1995 Jul;177(14):3985–3991. doi: 10.1128/jb.177.14.3985-3991.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zannoni D., Melandri B. A., Baccarini-Melandri A. Energy transduction in photosynthetic bacteria. X. Composition and function of the branched oxidase system in wild type and respiration deficient mutants of Rhodopseudomonas capsulata. Biochim Biophys Acta. 1976 Mar 12;423(3):413–430. doi: 10.1016/0005-2728(76)90197-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES