Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Oct;177(20):5971–5978. doi: 10.1128/jb.177.20.5971-5978.1995

Unusual ancestry of dehydratases associated with quinate catabolism in Acinetobacter calcoaceticus.

D A Elsemore 1, L N Ornston 1
PMCID: PMC177426  PMID: 7592351

Abstract

Catabolism of quinate to protocatechuate requires the consecutive action of quinate dehydrogenase (QuiA), dehydroquinate dehydratase (QuiB), and dehydroshikimate dehyratase (QuiC), Genes for catabolism of protocatechuate are encoded by the pca operon in the Acinetobacter calcoaceticus chromosome. Observations reported here demonstrate that A. calcoaceticus qui genes are clustered in the order quiBCXA directly downstream from the pca operon. Sequence comparisons indicate that quiX encodes a porin, but the specific function of this protein has not been clearly established. Properties of mutants created by insertion of omega elements show that quiBC is expressed as part of a single transcript, but there is also an independent transcriptional initiation site directly upstream of quiA. The deduced amino acid sequence of QuiC does not resemble any other known sequence. A. calcoaceticus QuiB is most directly related to a family of enzymes with identical catalytic activity and biosynthetic AroD function in coliform bacteria. Evolution of A. calcoaceticus quiB appears to have been accompanied by fusion of a leader sequence for transport of the encoded protein into the inner membrane, and the location of reactions catalyzed by the mature enzyme may account for the failure of A. calcoaceticus aroD to achieve effective complementation of null mutations in quiB. Analysis of a genetic site where a DNA segment encoding a leader sequence was transposed adds to evidence suggesting horizontal transfer of nucleotide sequences within genes during evolution.

Full Text

The Full Text of this article is available as a PDF (340.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Averhoff B., Gregg-Jolly L., Elsemore D., Ornston L. N. Genetic analysis of supraoperonic clustering by use of natural transformation in Acinetobacter calcoaceticus. J Bacteriol. 1992 Jan;174(1):200–204. doi: 10.1128/jb.174.1.200-204.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bensing B. A., Dunny G. M. Cloning and molecular analysis of genes affecting expression of binding substance, the recipient-encoded receptor(s) mediating mating aggregate formation in Enterococcus faecalis. J Bacteriol. 1993 Nov;175(22):7421–7429. doi: 10.1128/jb.175.22.7421-7429.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berlyn M. B., Giles N. H. Organization of enzymes in the polyaromatic synthetic pathway: separability in bacteria. J Bacteriol. 1969 Jul;99(1):222–230. doi: 10.1128/jb.99.1.222-230.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boys C. W., Bury S. M., Sawyer L., Moore J. D., Charles I. G., Hawkins A. R., Deka R., Kleanthous C., Coggins J. R. Crystallization of a type I 3-dehydroquinase from Salmonella typhi. J Mol Biol. 1992 Sep 5;227(1):352–355. doi: 10.1016/0022-2836(92)90704-n. [DOI] [PubMed] [Google Scholar]
  5. Charles I. G., Keyte J. W., Brammar W. J., Smith M., Hawkins A. R. The isolation and nucleotide sequence of the complex AROM locus of Aspergillus nidulans. Nucleic Acids Res. 1986 Mar 11;14(5):2201–2213. doi: 10.1093/nar/14.5.2201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cánovas J. L., Wheelis M. L., Stanier R. Y. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella calcoacetica. 2. The role of protocatechuate as inducer. Eur J Biochem. 1968 Jan;3(3):293–304. doi: 10.1111/j.1432-1033.1968.tb19529.x. [DOI] [PubMed] [Google Scholar]
  7. Duncan K., Chaudhuri S., Campbell M. S., Coggins J. R. The overexpression and complete amino acid sequence of Escherichia coli 3-dehydroquinase. Biochem J. 1986 Sep 1;238(2):475–483. doi: 10.1042/bj2380475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elsemore D. A., Ornston L. N. The pca-pob supraoperonic cluster of Acinetobacter calcoaceticus contains quiA, the structural gene for quinate-shikimate dehydrogenase. J Bacteriol. 1994 Dec;176(24):7659–7666. doi: 10.1128/jb.176.24.7659-7666.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Euverink G. J., Hessels G. I., Vrijbloed J. W., Coggins J. R., Dijkhuizen L. Purification and characterization of a dual function 3-dehydroquinate dehydratase from Amycolatopsis methanolica. J Gen Microbiol. 1992 Nov;138(11):2449–2457. doi: 10.1099/00221287-138-11-2449. [DOI] [PubMed] [Google Scholar]
  10. Feller G., Thiry M., Gerday C. Sequence of a lipase gene from the antarctic psychrotroph Moraxella TA144. Nucleic Acids Res. 1990 Nov 11;18(21):6431–6431. doi: 10.1093/nar/18.21.6431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garbe T., Servos S., Hawkins A., Dimitriadis G., Young D., Dougan G., Charles I. The Mycobacterium tuberculosis shikimate pathway genes: evolutionary relationship between biosynthetic and catabolic 3-dehydroquinases. Mol Gen Genet. 1991 Sep;228(3):385–392. doi: 10.1007/BF00260631. [DOI] [PubMed] [Google Scholar]
  12. Geever R. F., Huiet L., Baum J. A., Tyler B. M., Patel V. B., Rutledge B. J., Case M. E., Giles N. H. DNA sequence, organization and regulation of the qa gene cluster of Neurospora crassa. J Mol Biol. 1989 May 5;207(1):15–34. doi: 10.1016/0022-2836(89)90438-5. [DOI] [PubMed] [Google Scholar]
  13. Gerischer U., Ornston L. N. Spontaneous mutations in pcaH and -G, structural genes for protocatechuate 3,4-dioxygenase in Acinetobacter calcoaceticus. J Bacteriol. 1995 Mar;177(5):1336–1347. doi: 10.1128/jb.177.5.1336-1347.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Giles N. H., Partridge C. W., Ahmed S. I., Case M. E. The occurrence of two dehydroquinases in Neurospora crassa, one constitutive and one inducible. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1930–1937. doi: 10.1073/pnas.58.5.1930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gourley D. G., Coggins J. R., Isaacs N. W., Moore J. D., Charles I. G., Hawkins A. R. Crystallization of a type II dehydroquinase from Mycobacterium tuberculosis. J Mol Biol. 1994 Aug 19;241(3):488–491. doi: 10.1006/jmbi.1994.1524. [DOI] [PubMed] [Google Scholar]
  16. Gregg-Jolly L. A., Ornston L. N. Recovery of DNA from the Acinetobacter calcoaceticus chromosome by gap repair. J Bacteriol. 1990 Oct;172(10):6169–6172. doi: 10.1128/jb.172.10.6169-6172.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harayama S., Rekik M., Bairoch A., Neidle E. L., Ornston L. N. Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases. J Bacteriol. 1991 Dec;173(23):7540–7548. doi: 10.1128/jb.173.23.7540-7548.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hartnett C., Neidle E. L., Ngai K. L., Ornston L. N. DNA sequences of genes encoding Acinetobacter calcoaceticus protocatechuate 3,4-dioxygenase: evidence indicating shuffling of genes and of DNA sequences within genes during their evolutionary divergence. J Bacteriol. 1990 Feb;172(2):956–966. doi: 10.1128/jb.172.2.956-966.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hartnett G. B., Averhoff B., Ornston L. N. Selection of Acinetobacter calcoaceticus mutants deficient in the p-hydroxybenzoate hydroxylase gene (pobA), a member of a supraoperonic cluster. J Bacteriol. 1990 Oct;172(10):6160–6161. doi: 10.1128/jb.172.10.6160-6161.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hartnett G. B., Ornston L. N. Acquisition of apparent DNA slippage structures during extensive evolutionary divergence of pcaD and catD genes encoding identical catalytic activities in Acinetobacter calcoaceticus. Gene. 1994 May 3;142(1):23–29. doi: 10.1016/0378-1119(94)90350-6. [DOI] [PubMed] [Google Scholar]
  21. Harwood C. S., Nichols N. N., Kim M. K., Ditty J. L., Parales R. E. Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol. 1994 Nov;176(21):6479–6488. doi: 10.1128/jb.176.21.6479-6488.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Holmes D. S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. doi: 10.1016/0003-2697(81)90473-5. [DOI] [PubMed] [Google Scholar]
  23. Juni E., Janik A. Transformation of Acinetobacter calco-aceticus (Bacterium anitratum). J Bacteriol. 1969 Apr;98(1):281–288. doi: 10.1128/jb.98.1.281-288.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kleanthous C., Deka R., Davis K., Kelly S. M., Cooper A., Harding S. E., Price N. C., Hawkins A. R., Coggins J. R. A comparison of the enzymological and biophysical properties of two distinct classes of dehydroquinase enzymes. Biochem J. 1992 Mar 15;282(Pt 3):687–695. doi: 10.1042/bj2820687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kowalchuk G. A., Hartnett G. B., Benson A., Houghton J. E., Ngai K. L., Ornston L. N. Contrasting patterns of evolutionary divergence within the Acinetobacter calcoaceticus pca operon. Gene. 1994 Aug 19;146(1):23–30. doi: 10.1016/0378-1119(94)90829-x. [DOI] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Labedan B., Riley M. Widespread protein sequence similarities: origins of Escherichia coli genes. J Bacteriol. 1995 Mar;177(6):1585–1588. doi: 10.1128/jb.177.6.1585-1588.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lamb H. K., van den Hombergh J. P., Newton G. H., Moore J. D., Roberts C. F., Hawkins A. R. Differential flux through the quinate and shikimate pathways. Implications for the channelling hypothesis. Biochem J. 1992 May 15;284(Pt 1):181–187. doi: 10.1042/bj2840181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mazur P., Henzel W. J., Mattoo S., Kozarich J. W. 3-Carboxy-cis,cis-muconate lactonizing enzyme from Neurospora crassa: an alternate cycloisomerase motif. J Bacteriol. 1994 Mar;176(6):1718–1728. doi: 10.1128/jb.176.6.1718-1728.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mazur P., Pieken W. A., Budihas S. R., Williams S. E., Wong S., Kozarich J. W. Cis,cis-muconate lactonizing enzyme from Trichosporon cutaneum: evidence for a novel class of cycloisomerases in eucaryotes. Biochemistry. 1994 Feb 22;33(7):1961–1970. doi: 10.1021/bi00173a045. [DOI] [PubMed] [Google Scholar]
  31. Neidhart D. J., Kenyon G. L., Gerlt J. A., Petsko G. A. Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous. Nature. 1990 Oct 18;347(6294):692–694. doi: 10.1038/347692a0. [DOI] [PubMed] [Google Scholar]
  32. Neidle E. L., Hartnett C., Bonitz S., Ornston L. N. DNA sequence of the Acinetobacter calcoaceticus catechol 1,2-dioxygenase I structural gene catA: evidence for evolutionary divergence of intradiol dioxygenases by acquisition of DNA sequence repetitions. J Bacteriol. 1988 Oct;170(10):4874–4880. doi: 10.1128/jb.170.10.4874-4880.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nishimura A., Morita M., Nishimura Y., Sugino Y. A rapid and highly efficient method for preparation of competent Escherichia coli cells. Nucleic Acids Res. 1990 Oct 25;18(20):6169–6169. doi: 10.1093/nar/18.20.6169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
  35. Ornston L. N., Yeh W. K. Origins of metabolic diversity: evolutionary divergence by sequence repetition. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3996–4000. doi: 10.1073/pnas.76.8.3996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Parales R. E., Harwood C. S. Characterization of the genes encoding beta-ketoadipate: succinyl-coenzyme A transferase in Pseudomonas putida. J Bacteriol. 1992 Jul;174(14):4657–4666. doi: 10.1128/jb.174.14.4657-4666.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Peoples O. P., Sinskey A. J. Poly-beta-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding beta-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem. 1989 Sep 15;264(26):15293–15297. [PubMed] [Google Scholar]
  38. Petsko G. A., Kenyon G. L., Gerlt J. A., Ringe D., Kozarich J. W. On the origin of enzymatic species. Trends Biochem Sci. 1993 Oct;18(10):372–376. doi: 10.1016/0968-0004(93)90091-z. [DOI] [PubMed] [Google Scholar]
  39. Pittard J., Wallace B. J. Distribution and function of genes concerned with aromatic biosynthesis in Escherichia coli. J Bacteriol. 1966 Apr;91(4):1494–1508. doi: 10.1128/jb.91.4.1494-1508.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  41. Pugsley A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. doi: 10.1128/mr.57.1.50-108.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Servos S., Chatfield S., Hone D., Levine M., Dimitriadis G., Pickard D., Dougan G., Fairweather N., Charles I. Molecular cloning and characterization of the aroD gene encoding 3-dehydroquinase from Salmonella typhi. J Gen Microbiol. 1991 Jan;137(1):147–152. doi: 10.1099/00221287-137-1-147. [DOI] [PubMed] [Google Scholar]
  43. Stanier R. Y., Ornston L. N. The beta-ketoadipate pathway. Adv Microb Physiol. 1973;9(0):89–151. [PubMed] [Google Scholar]
  44. Tresguerres M. E., De Torrontegui G., Cánovas J. L. The metabolism of quinate by Acinetobacter calco-aceticus. Arch Mikrobiol. 1970;70(2):110–118. doi: 10.1007/BF00412202. [DOI] [PubMed] [Google Scholar]
  45. Tresguerres M. E., de Torrontegui G., Ingledew W. M., Cánovas J. L. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella. Control of quinate oxidation by protocatechuate. Eur J Biochem. 1970 Jul;14(3):445–450. doi: 10.1111/j.1432-1033.1970.tb00309.x. [DOI] [PubMed] [Google Scholar]
  46. Williams S. E., Woolridge E. M., Ransom S. C., Landro J. A., Babbitt P. C., Kozarich J. W. 3-Carboxy-cis,cis-muconate lactonizing enzyme from Pseudomonas putida is homologous to the class II fumarase family: a new reaction in the evolution of a mechanistic motif. Biochemistry. 1992 Oct 13;31(40):9768–9776. doi: 10.1021/bi00155a033. [DOI] [PubMed] [Google Scholar]
  47. Yeh W. K., Ornston L. N. Origins of metabolic diversity: substitution of homologous sequences into genes for enzymes with different catalytic activities. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5365–5369. doi: 10.1073/pnas.77.9.5365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. van der Meer J. R., de Vos W. M., Harayama S., Zehnder A. J. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev. 1992 Dec;56(4):677–694. doi: 10.1128/mr.56.4.677-694.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES