Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Oct;177(20):6001–6004. doi: 10.1128/jb.177.20.6001-6004.1995

Synergistic induction of the heat shock response in Escherichia coli by simultaneous treatment with chemical inducers.

T K Van Dyk 1, T R Reed 1, A C Vollmer 1, R A LaRossa 1
PMCID: PMC177432  PMID: 7592357

Abstract

Escherichia coli strains carrying transcriptional fusions of four sigma 32-controlled E. coli heat shock promoters to luxCDABE or lacZ reporter genes were stressed by chemicals added singly or in pairs. Much more than additive induction resulted from combinations of cadmium chloride, copper sulfate, ethanol, formamide, 4-nitrophenol, and pentachlorophenol.

Full Text

The Full Text of this article is available as a PDF (208.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blom A., Harder W., Matin A. Unique and overlapping pollutant stress proteins of Escherichia coli. Appl Environ Microbiol. 1992 Jan;58(1):331–334. doi: 10.1128/aem.58.1.331-334.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chin D. T., Goff S. A., Webster T., Smith T., Goldberg A. L. Sequence of the lon gene in Escherichia coli. A heat-shock gene which encodes the ATP-dependent protease La. J Biol Chem. 1988 Aug 25;263(24):11718–11728. [PubMed] [Google Scholar]
  3. Cowing D. W., Bardwell J. C., Craig E. A., Woolford C., Hendrix R. W., Gross C. A. Consensus sequence for Escherichia coli heat shock gene promoters. Proc Natl Acad Sci U S A. 1985 May;82(9):2679–2683. doi: 10.1073/pnas.82.9.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Curran B. P., Khalawan S. A. Alcohols lower the threshold temperature for the maximal activation of a heat shock expression vector in the yeast Saccharomyces cerevisiae. Microbiology. 1994 Sep;140(Pt 9):2225–2228. doi: 10.1099/13500872-140-9-2225. [DOI] [PubMed] [Google Scholar]
  5. Hahn G. M., Shiu E. C., Auger E. A. Mammalian stress proteins HSP70 and HSP28 coinduced by nicotine and either ethanol or heat. Mol Cell Biol. 1991 Dec;11(12):6034–6040. doi: 10.1128/mcb.11.12.6034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heikkila J. J., Darasch S. P., Mosser D. D., Bols N. C. Heat and sodium arsenite act synergistically on the induction of heat shock gene expression in Xenopus laevis A6 cells. Biochem Cell Biol. 1987 Apr;65(4):310–316. doi: 10.1139/o87-040. [DOI] [PubMed] [Google Scholar]
  7. Kato K., Goto S., Hasegawa K., Inaguma Y. Coinduction of two low-molecular-weight stress proteins, alpha B crystallin and HSP28, by heat or arsenite stress in human glioma cells. J Biochem. 1993 Nov;114(5):640–647. doi: 10.1093/oxfordjournals.jbchem.a124230. [DOI] [PubMed] [Google Scholar]
  8. Lindquist S., Craig E. A. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. [DOI] [PubMed] [Google Scholar]
  9. Menzel R. A microtiter plate-based system for the semiautomated growth and assay of bacterial cells for beta-galactosidase activity. Anal Biochem. 1989 Aug 15;181(1):40–50. doi: 10.1016/0003-2697(89)90391-6. [DOI] [PubMed] [Google Scholar]
  10. Rodenhiser D. I., Jung J. H., Atkinson B. G. The synergistic effect of hyperthermia and ethanol on changing gene expression of mouse lymphocytes. Can J Genet Cytol. 1986 Dec;28(6):1115–1124. doi: 10.1139/g86-155. [DOI] [PubMed] [Google Scholar]
  11. Santomenna L. D., Colberg-Poley A. M. Induction of cellular hsp70 expression by human cytomegalovirus. J Virol. 1990 May;64(5):2033–2040. doi: 10.1128/jvi.64.5.2033-2040.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sistonen L., Sarge K. D., Morimoto R. I. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol Cell Biol. 1994 Mar;14(3):2087–2099. doi: 10.1128/mcb.14.3.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Van Dyk T. K., Majarian W. R., Konstantinov K. B., Young R. M., Dhurjati P. S., LaRossa R. A. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol. 1994 May;60(5):1414–1420. doi: 10.1128/aem.60.5.1414-1420.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yano R., Imai M., Yura T. The use of operon fusions in studies of the heat-shock response: effects of altered sigma 32 on heat-shock promoter function in Escherichia coli. Mol Gen Genet. 1987 Apr;207(1):24–28. doi: 10.1007/BF00331486. [DOI] [PubMed] [Google Scholar]
  15. Yura T., Nagai H., Mori H. Regulation of the heat-shock response in bacteria. Annu Rev Microbiol. 1993;47:321–350. doi: 10.1146/annurev.mi.47.100193.001541. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES