Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Oct;177(20):6018–6020. doi: 10.1128/jb.177.20.6018-6020.1995

Hydrogenase does not confer significant benefits to Azotobacter vinelandii growing diazotrophically under conditions of glucose limitation.

K Linkerhägner 1, J Oelze 1
PMCID: PMC177436  PMID: 7592361

Abstract

The presumed beneficial effect of hydrogenase on growth of diazotrophic bacteria was reinvestigated with carbon-limited chemostat cultures of the hydrogenase-deficient mutant hoxKG of Azotobacter vinelandii and its parent. The results revealed that hydrogen recycling was too low to benefit the cellular energy metabolism or activities of nitrogenase and respiration.

Full Text

The Full Text of this article is available as a PDF (170.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dixon R. O. Hydrogenase in legume root nodule bacteroids: occurrence and properties. Arch Mikrobiol. 1972;85(3):193–201. doi: 10.1007/BF00408844. [DOI] [PubMed] [Google Scholar]
  2. Kuhla J., Oelze J. Dependence of nitrogenase switch-off upon oxygen stress on the nitrogenase activity in Azotobacter vinelandii. J Bacteriol. 1988 Nov;170(11):5325–5329. doi: 10.1128/jb.170.11.5325-5329.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  4. Laane C., Haaker H., Veeger C. On the efficiency of oxidative phosphorylation in membrane vesicles of Azotobacter vinelandii and of Rhizobium leguminosarum bacteroids. Eur J Biochem. 1979 Jul;97(2):369–377. doi: 10.1111/j.1432-1033.1979.tb13123.x. [DOI] [PubMed] [Google Scholar]
  5. Linkerhägner K., Oelze J. Cellular ATP levels and nitrogenase switchoff upon oxygen stress in chemostat cultures of Azotobacter vinelandii. J Bacteriol. 1995 Sep;177(18):5289–5293. doi: 10.1128/jb.177.18.5289-5293.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lundin A., Thore A. Comparison of methods for extraction of bacterial adenine nucleotides determined by firefly assay. Appl Microbiol. 1975 Nov;30(5):713–721. doi: 10.1128/am.30.5.713-721.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pirt S. J. Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch Microbiol. 1982 Dec 3;133(4):300–302. doi: 10.1007/BF00521294. [DOI] [PubMed] [Google Scholar]
  8. Post E., Kleiner D., Oelze J. Whole cell respiration and nitrogenase activities in Azotobacter vinelandii growing in oxygen controlled continuous culture. Arch Microbiol. 1983 Jan;134(1):68–72. doi: 10.1007/BF00429410. [DOI] [PubMed] [Google Scholar]
  9. Przybyla A. E., Robbins J., Menon N., Peck H. D., Jr Structure-function relationships among the nickel-containing hydrogenases. FEMS Microbiol Rev. 1992 Feb;8(2):109–135. doi: 10.1111/j.1574-6968.1992.tb04960.x. [DOI] [PubMed] [Google Scholar]
  10. Sayavedra-Soto L. A., Arp D. J. The hoxZ gene of the Azotobacter vinelandii hydrogenase operon is required for activation of hydrogenase. J Bacteriol. 1992 Aug;174(16):5295–5301. doi: 10.1128/jb.174.16.5295-5301.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Thorneley R. N., Lowe D. J. The mechanism of Klebsiella pneumoniae nitrogenase action. Pre-steady-state kinetics of an enzyme-bound intermediate in N2 reduction and of NH3 formation. Biochem J. 1984 Dec 15;224(3):887–894. doi: 10.1042/bj2240887. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES