Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Nov;177(21):6041–6048. doi: 10.1128/jb.177.21.6041-6048.1995

Functional recA, lexA, umuD, umuC, polA, and polB genes are not required for the Escherichia coli UVM response.

V A Palejwala 1, G E Wang 1, H S Murphy 1, M Z Humayun 1
PMCID: PMC177440  PMID: 7592365

Abstract

The Escherichia coli UVM response is a recently described phenomenon in which pretreatment of cells with DNA-damaging agents such as UV or alkylating agents significantly enhances mutation fixation at a model mutagenic lesion (3,N4-ethenocytosine; epsilon C) borne on a transfected M13 single-stranded DNA genome. Since UVM is observed in delta recA cells in which SOS induction should not occur, UVM may represent a novel, SOS-independent, inducible response. Here, we have addressed two specific hypothetical mechanisms for UVM: (i) UVM results from a recA-independent pathway for the induction of SOS genes thought to play a role in induced mutagenesis, and (ii) UVM results from a polymerase switch in which M13 replication in treated cells is carried out by DNA polymerase I (or DNA polymerase II) instead of DNA polymerase III. To address these hypotheses, E. coli cells with known defects in recA, lexA, umuDC, polA, or polB were treated with UV or 1-methyl-3-nitro-1-nitrosoguanidine before transfection of M13 single-stranded DNA bearing a site-specific ethenocytosine lesion. Survival of the transfected DNA was measured as transfection efficiency, and mutagenesis at the epsilon C residue was analyzed by a quantitative multiplex DNA sequencing technology. Our results show that UVM is observable in delta recA cells, in lexA3 (noninducible SOS repressor) cells, in LexA-overproducing cells, and in delta umuDC cells. Furthermore, our data show that UVM induction occurs in the absence of detectable induction of dinD, an SOS gene. These results make it unlikely that UVM results from a recA-independent alternative induction pathway for SOS gene.

Full Text

The Full Text of this article is available as a PDF (422.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbin A., Bartsch H. Mutagenic and promutagenic properties of DNA adducts formed by vinyl chloride metabolites. IARC Sci Publ. 1986;(70):345–358. [PubMed] [Google Scholar]
  2. Bates H., Bridges B. A. Mutagenic DNA repair in Escherichia coli. XIX. On the roles of RecA protein in ultraviolet light mutagenesis. Biochimie. 1991 Apr;73(4):485–489. doi: 10.1016/0300-9084(91)90116-i. [DOI] [PubMed] [Google Scholar]
  3. Bates H., Bridges B. A., Woodgate R. Mutagenic DNA repair in Escherichia coli, XX. Overproduction of UmuD' protein results in suppression of the umuC36 mutation in excision defective bacteria. Mutat Res. 1991 Sep-Oct;250(1-2):199–204. doi: 10.1016/0027-5107(91)90176-o. [DOI] [PubMed] [Google Scholar]
  4. Bates H., Randall S. K., Rayssiguier C., Bridges B. A., Goodman M. F., Radman M. Spontaneous and UV-induced mutations in Escherichia coli K-12 strains with altered or absent DNA polymerase I. J Bacteriol. 1989 May;171(5):2480–2484. doi: 10.1128/jb.171.5.2480-2484.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Battista J. R., Nohmi T., Donnelly C. E., Walker G. C. Amino acid similarities to other proteins offer insights into roles of UmuD and UmuC in mutagenesis. Genome. 1989;31(2):594–596. doi: 10.1139/g89-110. [DOI] [PubMed] [Google Scholar]
  6. Biswas S. B., Kornberg A. Nucleoside triphosphate binding to DNA polymerase III holoenzyme of Escherichia coli. A direct photoaffinity labeling study. J Biol Chem. 1984 Jun 25;259(12):7990–7993. [PubMed] [Google Scholar]
  7. Bonner C. A., Randall S. K., Rayssiguier C., Radman M., Eritja R., Kaplan B. E., McEntee K., Goodman M. F. Purification and characterization of an inducible Escherichia coli DNA polymerase capable of insertion and bypass at abasic lesions in DNA. J Biol Chem. 1988 Dec 15;263(35):18946–18952. [PubMed] [Google Scholar]
  8. Brent R., Ptashne M. The lexA gene product represses its own promoter. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1932–1936. doi: 10.1073/pnas.77.4.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bridges B. A. Mutagenesis after exposure of bacteria to ultraviolet light and delayed photoreversal. Mol Gen Genet. 1992 Jun;233(3):331–336. doi: 10.1007/BF00265428. [DOI] [PubMed] [Google Scholar]
  10. Bridges B. A. Mutagenic DNA repair in Escherichia coli. XVI. Mutagenesis by ultraviolet light plus delayed photoreversal in recA strains. Mutat Res. 1988 Apr;198(2):343–350. doi: 10.1016/0027-5107(88)90012-7. [DOI] [PubMed] [Google Scholar]
  11. Bridges B. A., Woodgate R. Mutagenic repair in Escherichia coli. X. The umuC gene product may be required for replication past pyrimidine dimers but not for the coding error in UV-mutagenesis. Mol Gen Genet. 1984;196(2):364–366. doi: 10.1007/BF00328073. [DOI] [PubMed] [Google Scholar]
  12. Bridges B. A., Woodgate R. Mutagenic repair in Escherichia coli: products of the recA gene and of the umuD and umuC genes act at different steps in UV-induced mutagenesis. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4193–4197. doi: 10.1073/pnas.82.12.4193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bridges B. A., Woodgate R. The two-step model of bacterial UV mutagenesis. Mutat Res. 1985 Jun-Jul;150(1-2):133–139. doi: 10.1016/0027-5107(85)90110-1. [DOI] [PubMed] [Google Scholar]
  14. Chen H. J., Chung F. L. Formation of etheno adducts in reactions of enals via autoxidation. Chem Res Toxicol. 1994 Nov-Dec;7(6):857–860. doi: 10.1021/tx00042a021. [DOI] [PubMed] [Google Scholar]
  15. Chen H., Sun Y., Stark T., Beattie W., Moses R. E. Nucleotide sequence and deletion analysis of the polB gene of Escherichia coli. DNA Cell Biol. 1990 Nov;9(9):631–635. doi: 10.1089/dna.1990.9.631. [DOI] [PubMed] [Google Scholar]
  16. Christensen J. R., LeClerc J. E., Tata P. V., Christensen R. B., Lawrence C. W. UmuC function is not essential for the production of all targeted lacI mutations induced by ultraviolet light. J Mol Biol. 1988 Oct 5;203(3):635–641. doi: 10.1016/0022-2836(88)90198-2. [DOI] [PubMed] [Google Scholar]
  17. Cohen-Fix O., Livneh Z. Biochemical analysis of UV mutagenesis in Escherichia coli by using a cell-free reaction coupled to a bioassay: identification of a DNA repair-dependent, replication-independent pathway. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3300–3304. doi: 10.1073/pnas.89.8.3300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Das S. K., Benditt E. P., Loeb L. A. Rapid changes in deoxynucleoside triphosphate pools in mammalian cells treated with mutagens. Biochem Biophys Res Commun. 1983 Jul 29;114(2):458–464. doi: 10.1016/0006-291x(83)90802-1. [DOI] [PubMed] [Google Scholar]
  19. Dutreix M., Moreau P. L., Bailone A., Galibert F., Battista J. R., Walker G. C., Devoret R. New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV mutagenesis. J Bacteriol. 1989 May;171(5):2415–2423. doi: 10.1128/jb.171.5.2415-2423.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Echols H., Goodman M. F. Fidelity mechanisms in DNA replication. Annu Rev Biochem. 1991;60:477–511. doi: 10.1146/annurev.bi.60.070191.002401. [DOI] [PubMed] [Google Scholar]
  21. Erlich H. A., Cox E. C. Interaction of an Escherichia coli mutator gene with a deoxyribonucleotide effector. Mol Gen Genet. 1980;178(3):703–708. doi: 10.1007/BF00337881. [DOI] [PubMed] [Google Scholar]
  22. Frank E. G., Hauser J., Levine A. S., Woodgate R. Targeting of the UmuD, UmuD', and MucA' mutagenesis proteins to DNA by RecA protein. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8169–8173. doi: 10.1073/pnas.90.17.8169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Freitag N., McEntee K. "Activated"-RecA protein affinity chromatography of LexA repressor and other SOS-regulated proteins. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8363–8367. doi: 10.1073/pnas.86.21.8363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Guyer M. S., Reed R. R., Steitz J. A., Low K. B. Identification of a sex-factor-affinity site in E. coli as gamma delta. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):135–140. doi: 10.1101/sqb.1981.045.01.022. [DOI] [PubMed] [Google Scholar]
  25. Heitman J., Model P. SOS induction as an in vivo assay of enzyme-DNA interactions. Gene. 1991 Jul 15;103(1):1–9. doi: 10.1016/0378-1119(91)90383-m. [DOI] [PubMed] [Google Scholar]
  26. Iwasaki H., Nakata A., Walker G. C., Shinagawa H. The Escherichia coli polB gene, which encodes DNA polymerase II, is regulated by the SOS system. J Bacteriol. 1990 Nov;172(11):6268–6273. doi: 10.1128/jb.172.11.6268-6273.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jacobsen J. S., Humayun M. Z. Mechanisms of mutagenesis by the vinyl chloride metabolite chloroacetaldehyde. Effect of gene-targeted in vitro adduction of M13 DNA on DNA template activity in vivo and in vitro. Biochemistry. 1990 Jan 16;29(2):496–504. doi: 10.1021/bi00454a025. [DOI] [PubMed] [Google Scholar]
  28. Jacobsen J. S., Perkins C. P., Callahan J. T., Sambamurti K., Humayun M. Z. Mechanisms of mutagenesis by chloroacetaldehyde. Genetics. 1989 Feb;121(2):213–222. doi: 10.1093/genetics/121.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Joyce C. M., Grindley N. D. Method for determining whether a gene of Escherichia coli is essential: application to the polA gene. J Bacteriol. 1984 May;158(2):636–643. doi: 10.1128/jb.158.2.636-643.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kow Y. W., Faundez G., Hays S., Bonner C. A., Goodman M. F., Wallace S. S. Absence of a role for DNA polymerase II in SOS-induced translesion bypass of phi X174. J Bacteriol. 1993 Jan;175(2):561–564. doi: 10.1128/jb.175.2.561-564.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kunz B. A., Kohalmi S. E., Kunkel T. A., Mathews C. K., McIntosh E. M., Reidy J. A. International Commission for Protection Against Environmental Mutagens and Carcinogens. Deoxyribonucleoside triphosphate levels: a critical factor in the maintenance of genetic stability. Mutat Res. 1994 Aug;318(1):1–64. doi: 10.1016/0165-1110(94)90006-x. [DOI] [PubMed] [Google Scholar]
  32. Lackey D., Krauss S. W., Linn S. Characterization of DNA polymerase I*, a form of DNA polymerase I found in Escherichia coli expressing SOS functions. J Biol Chem. 1985 Mar 10;260(5):3178–3184. [PubMed] [Google Scholar]
  33. Lackey D., Krauss S. W., Linn S. Isolation of an altered form of DNA polymerase I from Escherichia coli cells induced for recA/lexA functions. Proc Natl Acad Sci U S A. 1982 Jan;79(2):330–334. doi: 10.1073/pnas.79.2.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Leithauser M. T., Liem A., Stewart B. C., Miller E. C., Miller J. A. 1,N6-ethenoadenosine formation, mutagenicity and murine tumor induction as indicators of the generation of an electrophilic epoxide metabolite of the closely related carcinogens ethyl carbamate (urethane) and vinyl carbamate. Carcinogenesis. 1990 Mar;11(3):463–473. doi: 10.1093/carcin/11.3.463. [DOI] [PubMed] [Google Scholar]
  35. Lindahl T., Sedgwick B., Sekiguchi M., Nakabeppu Y. Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem. 1988;57:133–157. doi: 10.1146/annurev.bi.57.070188.001025. [DOI] [PubMed] [Google Scholar]
  36. Little J. W. Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie. 1991 Apr;73(4):411–421. doi: 10.1016/0300-9084(91)90108-d. [DOI] [PubMed] [Google Scholar]
  37. Livneh Z., Cohen-Fix O., Skaliter R., Elizur T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit Rev Biochem Mol Biol. 1993;28(6):465–513. doi: 10.3109/10409239309085136. [DOI] [PubMed] [Google Scholar]
  38. Loeb L. A., Kunkel T. A. Fidelity of DNA synthesis. Annu Rev Biochem. 1982;51:429–457. doi: 10.1146/annurev.bi.51.070182.002241. [DOI] [PubMed] [Google Scholar]
  39. Lu C., Scheuermann R. H., Echols H. Capacity of RecA protein to bind preferentially to UV lesions and inhibit the editing subunit (epsilon) of DNA polymerase III: a possible mechanism for SOS-induced targeted mutagenesis. Proc Natl Acad Sci U S A. 1986 Feb;83(3):619–623. doi: 10.1073/pnas.83.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Marnett L. J., Burcham P. C. Endogenous DNA adducts: potential and paradox. Chem Res Toxicol. 1993 Nov-Dec;6(6):771–785. doi: 10.1021/tx00036a005. [DOI] [PubMed] [Google Scholar]
  41. Moriya M., Zhang W., Johnson F., Grollman A. P. Mutagenic potency of exocyclic DNA adducts: marked differences between Escherichia coli and simian kidney cells. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11899–11903. doi: 10.1073/pnas.91.25.11899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mount D. W., Low K. B., Edmiston S. J. Dominant mutations (lex) in Escherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet lght-induced mutations. J Bacteriol. 1972 Nov;112(2):886–893. doi: 10.1128/jb.112.2.886-893.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Murli S., Walker G. C. SOS mutagenesis. Curr Opin Genet Dev. 1993 Oct;3(5):719–725. doi: 10.1016/s0959-437x(05)80089-9. [DOI] [PubMed] [Google Scholar]
  44. Palejwala V. A., Pandya G. A., Bhanot O. S., Solomon J. J., Murphy H. S., Dunman P. M., Humayun M. Z. UVM, an ultraviolet-inducible RecA-independent mutagenic phenomenon in Escherichia coli. J Biol Chem. 1994 Nov 4;269(44):27433–27440. [PubMed] [Google Scholar]
  45. Palejwala V. A., Rzepka R. W., Humayun M. Z. UV irradiation of Escherichia coli modulates mutagenesis at a site-specific ethenocytosine residue on M13 DNA. Evidence for an inducible recA-independent effect. Biochemistry. 1993 Apr 20;32(15):4112–4120. doi: 10.1021/bi00066a037. [DOI] [PubMed] [Google Scholar]
  46. Palejwala V. A., Rzepka R. W., Simha D., Humayun M. Z. Quantitative multiplex sequence analysis of mutational hot spots. Frequency and specificity of mutations induced by a site-specific ethenocytosine in M13 viral DNA. Biochemistry. 1993 Apr 20;32(15):4105–4111. doi: 10.1021/bi00066a036. [DOI] [PubMed] [Google Scholar]
  47. Palejwala V. A., Simha D., Humayun M. Z. Mechanisms of mutagenesis by exocyclic DNA adducts. Transfection of M13 viral DNA bearing a site-specific adduct shows that ethenocytosine is a highly efficient RecA-independent mutagenic noninstructional lesion. Biochemistry. 1991 Sep 10;30(36):8736–8743. doi: 10.1021/bi00100a004. [DOI] [PubMed] [Google Scholar]
  48. Radman M. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci. 1975;5A:355–367. doi: 10.1007/978-1-4684-2895-7_48. [DOI] [PubMed] [Google Scholar]
  49. Rajagopalan M., Lu C., Woodgate R., O'Donnell M., Goodman M. F., Echols H. Activity of the purified mutagenesis proteins UmuC, UmuD', and RecA in replicative bypass of an abasic DNA lesion by DNA polymerase III. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10777–10781. doi: 10.1073/pnas.89.22.10777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Roberts J. D., Kunkel T. A. Fidelity of a human cell DNA replication complex. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7064–7068. doi: 10.1073/pnas.85.19.7064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sahasrabudhe S. R., Luo X., Humayun M. Z. Specificity of base substitutions induced by the acridine mutagen ICR-191: mispairing by guanine N7 adducts as a mutagenic mechanism. Genetics. 1991 Dec;129(4):981–989. doi: 10.1093/genetics/129.4.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sambamurti K., Callahan J., Luo X., Perkins C. P., Jacobsen J. S., Humayun M. Z. Mechanisms of mutagenesis by a bulky DNA lesion at the guanine N7 position. Genetics. 1988 Dec;120(4):863–873. doi: 10.1093/genetics/120.4.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Shinagawa H., Iwasaki H., Ishino Y., Nakata A. SOS-inducible DNA polymerase II of E coli is homologous to replicative DNA polymerase of eukaryotes. Biochimie. 1991 Apr;73(4):433–435. doi: 10.1016/0300-9084(91)90110-m. [DOI] [PubMed] [Google Scholar]
  54. Simha D., Palejwala V. A., Humayun M. Z. Mechanisms of mutagenesis by exocyclic DNA adducts. Construction and in vitro template characteristics of an oligonucleotide bearing a single site-specific ethenocytosine. Biochemistry. 1991 Sep 10;30(36):8727–8735. doi: 10.1021/bi00100a003. [DOI] [PubMed] [Google Scholar]
  55. Slater S. C., Maurer R. Requirements for bypass of UV-induced lesions in single-stranded DNA of bacteriophage phi X174 in Salmonella typhimurium. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1251–1255. doi: 10.1073/pnas.88.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Sommer S., Bailone A., Devoret R. The appearance of the UmuD'C protein complex in Escherichia coli switches repair from homologous recombination to SOS mutagenesis. Mol Microbiol. 1993 Dec;10(5):963–971. doi: 10.1111/j.1365-2958.1993.tb00968.x. [DOI] [PubMed] [Google Scholar]
  57. Sommer S., Knezevic J., Bailone A., Devoret R. Induction of only one SOS operon, umuDC, is required for SOS mutagenesis in Escherichia coli. Mol Gen Genet. 1993 May;239(1-2):137–144. doi: 10.1007/BF00281612. [DOI] [PubMed] [Google Scholar]
  58. Suzuki K., Miyaki M., Ono T., Mori H., Moriya H., Kato T. UV-induced imbalance of the deoxyribonucleoside triphosphate pool in E. coli. Mutat Res. 1983 Dec;122(3-4):293–298. doi: 10.1016/0165-7992(83)90009-x. [DOI] [PubMed] [Google Scholar]
  59. Sweasy J. B., Witkin E. M., Sinha N., Roegner-Maniscalco V. RecA protein of Escherichia coli has a third essential role in SOS mutator activity. J Bacteriol. 1990 Jun;172(6):3030–3036. doi: 10.1128/jb.172.6.3030-3036.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Tessman I., Kennedy M. A. DNA polymerase II of Escherichia coli in the bypass of abasic sites in vivo. Genetics. 1994 Feb;136(2):439–448. doi: 10.1093/genetics/136.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Vaca C. E., Wilhelm J., Harms-Ringdahl M. Interaction of lipid peroxidation products with DNA. A review. Mutat Res. 1988 Mar;195(2):137–149. doi: 10.1016/0165-1110(88)90022-x. [DOI] [PubMed] [Google Scholar]
  62. Villani G., Boiteux S., Radman M. Mechanism of ultraviolet-induced mutagenesis: extent and fidelity of in vitro DNA synthesis on irradiated templates. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3037–3041. doi: 10.1073/pnas.75.7.3037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Walker G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev. 1984 Mar;48(1):60–93. doi: 10.1128/mr.48.1.60-93.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Weigle J. J. Induction of Mutations in a Bacterial Virus. Proc Natl Acad Sci U S A. 1953 Jul;39(7):628–636. doi: 10.1073/pnas.39.7.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Witkin E. M. RecA protein in the SOS response: milestones and mysteries. Biochimie. 1991 Feb-Mar;73(2-3):133–141. doi: 10.1016/0300-9084(91)90196-8. [DOI] [PubMed] [Google Scholar]
  66. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Woodgate R., Bridges B. A., Herrera G., Blanco M. Mutagenic DNA repair in Escherichia coli. XIII. Proofreading exonuclease of DNA polymerase III holoenzyme is not operational during UV mutagenesis. Mutat Res. 1987 Jan;183(1):31–37. doi: 10.1016/0167-8817(87)90042-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES