Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Nov;177(21):6069–6076. doi: 10.1128/jb.177.21.6069-6076.1995

A lacZ reporter fusion method for the genetic analysis of regulatory mutations in pathways of fungal secondary metabolism and its application to the Aspergillus nidulans penicillin pathway.

B Pérez-Esteban 1, E Gómez-Pardo 1, M A Peñalva 1
PMCID: PMC177444  PMID: 7592369

Abstract

Secondary metabolism, usually superfluous under laboratory conditions, is intrinsically elusive to genetic analysis of its regulation. We describe here a method of analyzing regulatory mutations affecting expression of secondary metabolic genes, with an Aspergillus nidulans penicillin structural gene (ipnA [encoding isopenicillin N-synthase]) as a model. The method is based on a targeted double integration of a lacZ fusion reporter gene in a chromosome different from that containing the penicillin gene cluster. The trans-acting regulatory mutations simultaneously affect lacZ expression and penicillin biosynthesis. One of these mutations (npeE1) has been analyzed in detail. This mutation is recessive, prevents penicillin production and ipnA'::'lacZ expression, and results in very low levels of the ipnA message at certain times of growth. This indicates that npeE positively controls ipnA transcription. We also show that this tandem reporter fusion allows genetic analysis of npeE1 by using the sexual and parasexual cycles and that lacZ expression is an easily scorable phenotype. Haploidization analysis established that npeE is located in chromosome IV, but npeE1 does not show meiotic linkage to a number of known chromosome IV markers. This method might be of general applicability to genetic analysis of regulation of other fungal secondary metabolic pathways.

Full Text

The Full Text of this article is available as a PDF (460.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aramayo R., Adams T. H., Timberlake W. E. A large cluster of highly expressed genes is dispensable for growth and development in Aspergillus nidulans. Genetics. 1989 May;122(1):65–71. doi: 10.1093/genetics/122.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arst H. N., Jr, Bignell E., Tilburn J. Two new genes involved in signalling ambient pH in Aspergillus nidulans. Mol Gen Genet. 1994 Dec 15;245(6):787–790. doi: 10.1007/BF00297286. [DOI] [PubMed] [Google Scholar]
  3. Arst H. N., Jr Localisation of several chromosome I genes of Aspergillus nidulans: implications for mitotic recombination. Mol Gen Genet. 1988 Aug;213(2-3):545–547. doi: 10.1007/BF00339629. [DOI] [PubMed] [Google Scholar]
  4. Brakhage A. A., Browne P., Turner G. Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J Bacteriol. 1992 Jun;174(11):3789–3799. doi: 10.1128/jb.174.11.3789-3799.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brakhage A. A., Van den Brulle J. Use of reporter genes to identify recessive trans-acting mutations specifically involved in the regulation of Aspergillus nidulans penicillin biosynthesis genes. J Bacteriol. 1995 May;177(10):2781–2788. doi: 10.1128/jb.177.10.2781-2788.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caddick M. X., Arst H. N., Jr Structural genes for phosphatases in Aspergillus nidulans. Genet Res. 1986 Apr;47(2):83–91. doi: 10.1017/s0016672300022904. [DOI] [PubMed] [Google Scholar]
  7. Caddick M. X., Arst H. N., Jr, Taylor L. H., Johnson R. I., Brownlee A. G. Cloning of the regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. EMBO J. 1986 May;5(5):1087–1090. doi: 10.1002/j.1460-2075.1986.tb04326.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cole D. S., Holt G., Macdonald K. D. Relationship of the genetic determination of impaired penicillin production in naturally occurring strains to that in induced mutants of Aspergillus nidulans. J Gen Microbiol. 1976 Oct;96(2):423–426. doi: 10.1099/00221287-96-2-423. [DOI] [PubMed] [Google Scholar]
  9. Cove D. J. Chlorate toxicity in Aspergillus nidulans. Studies of mutants altered in nitrate assimilation. Mol Gen Genet. 1976 Jul 23;146(2):147–159. doi: 10.1007/BF00268083. [DOI] [PubMed] [Google Scholar]
  10. Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
  11. Edwards G. F., Holt G., Macdonald K. D. Mutants of Aspergillus nidulans impaired in penicillin biosynthesis. J Gen Microbiol. 1974 Oct;84(2):420–423. doi: 10.1099/00221287-84-2-420. [DOI] [PubMed] [Google Scholar]
  12. Espeso E. A., Fernández-Cañn J. M., Peñalva M. A. Carbon regulation of penicillin biosynthesis in Aspergillus nidulans: a minor effect of mutations in creB and creC. FEMS Microbiol Lett. 1995 Feb 1;126(1):63–67. doi: 10.1016/0378-1097(94)00527-x. [DOI] [PubMed] [Google Scholar]
  13. Espeso E. A., Peñalva M. A. Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans. Mol Microbiol. 1992 Jun;6(11):1457–1465. doi: 10.1111/j.1365-2958.1992.tb00866.x. [DOI] [PubMed] [Google Scholar]
  14. Espeso E. A., Tilburn J., Arst H. N., Jr, Peñalva M. A. pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J. 1993 Oct;12(10):3947–3956. doi: 10.1002/j.1460-2075.1993.tb06072.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fantes P. A., Roberts C. F. Beta-galactosidase activity and lactose utilization in Aspergillus nidulans. J Gen Microbiol. 1973 Aug;77(2):417–486. doi: 10.1099/00221287-77-2-417. [DOI] [PubMed] [Google Scholar]
  16. Gajewski W., Litwińska J. Methionine loci and their suppressors in Aspergillus nidulans. Mol Gen Genet. 1968;102(3):210–220. doi: 10.1007/BF00385976. [DOI] [PubMed] [Google Scholar]
  17. Gómez-Pardo E., Peñalva M. A. The upstream region of the IPNS gene determines expression during secondary metabolism in Aspergillus nidulans. Gene. 1990 Apr 30;89(1):109–115. doi: 10.1016/0378-1119(90)90212-a. [DOI] [PubMed] [Google Scholar]
  18. MacCabe A. P., Riach M. B., Unkles S. E., Kinghorn J. R. The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J. 1990 Jan;9(1):279–287. doi: 10.1002/j.1460-2075.1990.tb08106.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Makins J. F., Holt G., Macdonald K. D. The genetic location of three mutations impairing penicillin production in Aspergillus nidulans. J Gen Microbiol. 1983 Oct;129(10):3027–3033. doi: 10.1099/00221287-129-10-3027. [DOI] [PubMed] [Google Scholar]
  20. McCully K. S., Forbes E. The use of p-fluorophenylalanine with 'master strains' of Aspergillus nidulans for assigning genes to linkage groups. Genet Res. 1965 Nov;6(3):352–359. doi: 10.1017/s0016672300004249. [DOI] [PubMed] [Google Scholar]
  21. Pérez-Esteban B., Orejas M., Gómez-Pardo E., Peñalva M. A. Molecular characterization of a fungal secondary metabolism promoter: transcription of the Aspergillus nidulans isopenicillin N synthetase gene is modulated by upstream negative elements. Mol Microbiol. 1993 Aug;9(4):881–895. doi: 10.1111/j.1365-2958.1993.tb01746.x. [DOI] [PubMed] [Google Scholar]
  22. Shah A. J., Tilburn J., Adlard M. W., Arst H. N., Jr pH regulation of penicillin production in Aspergillus nidulans. FEMS Microbiol Lett. 1991 Jan 15;61(2-3):209–212. doi: 10.1016/0378-1097(91)90553-m. [DOI] [PubMed] [Google Scholar]
  23. Tilburn J., Sarkar S., Widdick D. A., Espeso E. A., Orejas M., Mungroo J., Peñalva M. A., Arst H. N., Jr The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 1995 Feb 15;14(4):779–790. doi: 10.1002/j.1460-2075.1995.tb07056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tilburn J., Scazzocchio C., Taylor G. G., Zabicky-Zissman J. H., Lockington R. A., Davies R. W. Transformation by integration in Aspergillus nidulans. Gene. 1983 Dec;26(2-3):205–221. doi: 10.1016/0378-1119(83)90191-9. [DOI] [PubMed] [Google Scholar]
  25. Timberlake W. E., Marshall M. A. Genetic engineering of filamentous fungi. Science. 1989 Jun 16;244(4910):1313–1317. doi: 10.1126/science.2525275. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES