Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Nov;177(21):6077–6082. doi: 10.1128/jb.177.21.6077-6082.1995

Transcription of the archaeal trkA homolog in Methanosarcina mazei S-6.

E Conway de Macario 1, A J Macario 1
PMCID: PMC177445  PMID: 7592370

Abstract

Transcription of the archaeal trkA gene homolog in Methanosarcina mazei S-6 was studied at the optimal growth temperature of 37 degrees C and after heat shock at 45 degrees C. Northern (RNA) blotting results (transcript size) and data from primer extension experiments to map the transcription initiation site indicate that trkA is cotranscribed with another gene. The latter, orf11, encodes a protein of 94 amino acids (10,611 Da) and is located upstream of trkA, with which it overlaps: the translation stop codon of orf11, TGA, shares the bases T and G with the translation start codon of trkA, ATG. These genes' transcription was decreased by heat shock to the point of making the transcript undetectable by Northern or dot blotting procedures. orf11 and trkA differ in codon usage patterns, and the proteins coded by them, i.e., Orf11 and TrkA, are dissimilar in amino acid sequence and composition.

Full Text

The Full Text of this article is available as a PDF (373.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boone D. R., Mah R. A. Effects of Calcium, Magnesium, pH, and Extent of Growth on the Morphology of Methanosarcina mazei S-6. Appl Environ Microbiol. 1987 Jul;53(7):1699–1700. doi: 10.1128/aem.53.7.1699-1700.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bossemeyer D., Borchard A., Dosch D. C., Helmer G. C., Epstein W., Booth I. R., Bakker E. P. K+-transport protein TrkA of Escherichia coli is a peripheral membrane protein that requires other trk gene products for attachment to the cytoplasmic membrane. J Biol Chem. 1989 Oct 5;264(28):16403–16410. [PubMed] [Google Scholar]
  3. Brown J. W., Daniels C. J., Reeve J. N. Gene structure, organization, and expression in archaebacteria. Crit Rev Microbiol. 1989;16(4):287–338. doi: 10.3109/10408418909105479. [DOI] [PubMed] [Google Scholar]
  4. Clarens M., Macario A. J., Conway de Macario E. The archaeal dnaK-dnaJ gene cluster: organization and expression in the methanogen Methanosarcina mazei. J Mol Biol. 1995 Jul 7;250(2):191–201. doi: 10.1006/jmbi.1995.0370. [DOI] [PubMed] [Google Scholar]
  5. Conway De Macario E., Clarens M., Macario A. J. Archaeal grpE: transcription in two different morphologic stages of Methanosarcina mazei and comparison with dnaK and dnaJ. J Bacteriol. 1995 Feb;177(3):544–550. doi: 10.1128/jb.177.3.544-550.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conway de Macario E., Dugan C. B., Macario A. J. Identification of a grpE heat-shock gene homolog in the archaeon Methanosarcina mazei. J Mol Biol. 1994 Jul 1;240(1):95–101. doi: 10.1006/jmbi.1994.1422. [DOI] [PubMed] [Google Scholar]
  7. Dosch D. C., Helmer G. L., Sutton S. H., Salvacion F. F., Epstein W. Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake potassium. J Bacteriol. 1991 Jan;173(2):687–696. doi: 10.1128/jb.173.2.687-696.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamann A., Bossemeyer D., Bakker E. P. Physical mapping of the K+ transport trkA gene of Escherichia coli and overproduction of the TrkA protein. J Bacteriol. 1987 Jul;169(7):3138–3145. doi: 10.1128/jb.169.7.3138-3145.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hausner W., Thomm M. Purification and characterization of a general transcription factor, aTFB, from the archaeon Methanococcus thermolithotrophicus. J Biol Chem. 1993 Nov 15;268(32):24047–24052. [PubMed] [Google Scholar]
  10. Heurteaux C., Bertaina V., Widmann C., Lazdunski M. K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid beta-protein precursor genes and neuronal death in rat hippocampus. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9431–9435. doi: 10.1073/pnas.90.20.9431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kayano T., Noda M., Flockerzi V., Takahashi H., Numa S. Primary structure of rat brain sodium channel III deduced from the cDNA sequence. FEBS Lett. 1988 Feb 8;228(1):187–194. doi: 10.1016/0014-5793(88)80614-8. [DOI] [PubMed] [Google Scholar]
  12. Macario A. J., Dugan C. B., Conway de Macario E. An archaeal trkA homolog near dnaK and dnaJ. Biochim Biophys Acta. 1993 Dec 14;1216(3):495–498. doi: 10.1016/0167-4781(93)90022-6. [DOI] [PubMed] [Google Scholar]
  13. Marsh T. L., Reich C. I., Whitelock R. B., Olsen G. J. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4180–4184. doi: 10.1073/pnas.91.10.4180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meury J., Kohiyama M. Role of heat shock protein DnaK in osmotic adaptation of Escherichia coli. J Bacteriol. 1991 Jul;173(14):4404–4410. doi: 10.1128/jb.173.14.4404-4410.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Müller B., Allmansberger R., Klein A. Termination of a transcription unit comprising highly expressed genes in the archaebacterium Methanococcus voltae. Nucleic Acids Res. 1985 Sep 25;13(18):6439–6445. doi: 10.1093/nar/13.18.6439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakamura T., Matsuba Y., Yamamuro N., Booth I. R., Unemoto T. Cloning and sequencing of a K+ transport gene (trk A) from the marine bacterium Vibrio alginolyticus. Biochim Biophys Acta. 1994 Nov 22;1219(3):701–705. doi: 10.1016/0167-4781(94)90231-3. [DOI] [PubMed] [Google Scholar]
  17. Narva K. E., Feitelson J. S. Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J Bacteriol. 1990 Jan;172(1):326–333. doi: 10.1128/jb.172.1.326-333.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Noda M., Ikeda T., Kayano T., Suzuki H., Takeshima H., Kurasaki M., Takahashi H., Numa S. Existence of distinct sodium channel messenger RNAs in rat brain. Nature. 1986 Mar 13;320(6058):188–192. doi: 10.1038/320188a0. [DOI] [PubMed] [Google Scholar]
  19. O'Brien M. C., McKay D. B. How potassium affects the activity of the molecular chaperone Hsc70. I. Potassium is required for optimal ATPase activity. J Biol Chem. 1995 Feb 3;270(5):2247–2250. doi: 10.1074/jbc.270.5.2247. [DOI] [PubMed] [Google Scholar]
  20. Ohta T., Saito K., Kuroda M., Honda K., Hirata H., Hayashi H. Molecular cloning of two new heat shock genes related to the hsp70 genes in Staphylococcus aureus. J Bacteriol. 1994 Aug;176(15):4779–4783. doi: 10.1128/jb.176.15.4779-4783.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Palleros D. R., Reid K. L., Shi L., Welch W. J., Fink A. L. ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature. 1993 Oct 14;365(6447):664–666. doi: 10.1038/365664a0. [DOI] [PubMed] [Google Scholar]
  22. Parra-Lopez C., Lin R., Aspedon A., Groisman E. A. A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium. EMBO J. 1994 Sep 1;13(17):3964–3972. doi: 10.1002/j.1460-2075.1994.tb06712.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pawlowski K., Klosse U., de Bruijn F. J. Characterization of a novel Azorhizobium caulinodans ORS571 two-component regulatory system, NtrY/NtrX, involved in nitrogen fixation and metabolism. Mol Gen Genet. 1991 Dec;231(1):124–138. doi: 10.1007/BF00293830. [DOI] [PubMed] [Google Scholar]
  24. Reeve J. N. Molecular biology of methanogens. Annu Rev Microbiol. 1992;46:165–191. doi: 10.1146/annurev.mi.46.100192.001121. [DOI] [PubMed] [Google Scholar]
  25. Rowlands T., Baumann P., Jackson S. P. The TATA-binding protein: a general transcription factor in eukaryotes and archaebacteria. Science. 1994 May 27;264(5163):1326–1329. doi: 10.1126/science.8191287. [DOI] [PubMed] [Google Scholar]
  26. Saad A. H., Hahn G. M. Activation of potassium channels: relationship to the heat shock response. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9396–9399. doi: 10.1073/pnas.89.20.9396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schlösser A., Hamann A., Bossemeyer D., Schneider E., Bakker E. P. NAD+ binding to the Escherichia coli K(+)-uptake protein TrkA and sequence similarity between TrkA and domains of a family of dehydrogenases suggest a role for NAD+ in bacterial transport. Mol Microbiol. 1993 Aug;9(3):533–543. doi: 10.1111/j.1365-2958.1993.tb01714.x. [DOI] [PubMed] [Google Scholar]
  28. Schlösser A., Meldorf M., Stumpe S., Bakker E. P., Epstein W. TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli. J Bacteriol. 1995 Apr;177(7):1908–1910. doi: 10.1128/jb.177.7.1908-1910.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Völker U., Mach H., Schmid R., Hecker M. Stress proteins and cross-protection by heat shock and salt stress in Bacillus subtilis. J Gen Microbiol. 1992 Oct;138(10):2125–2135. doi: 10.1099/00221287-138-10-2125. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES