Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Nov;177(21):6184–6194. doi: 10.1128/jb.177.21.6184-6194.1995

Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133.

M L Summers 1, J G Wallis 1, E L Campbell 1, J C Meeks 1
PMCID: PMC177459  PMID: 7592384

Abstract

Heterocysts, sites of nitrogen fixation in certain filamentous cyanobacteria, are limited to a heterotrophic metabolism, rather than the photoautotrophic metabolism characteristic of cyanobacterial vegetative cells. The metabolic route of carbon catabolism in the supply of reductant to nitrogenase and for respiratory electron transport in heterocysts is unresolved. The gene (zwf) encoding glucose-6-phosphate dehydrogenase (G6PD), the initial enzyme of the oxidative pentose phosphate pathway, was inactivated in the heterocyst-forming, facultatively heterotrophic cyanobacterium, Nostoc sp. strain ATCC 29133. The zwf mutant strain had less than 5% of the wild-type apparent G6PD activity, while retaining wild-type rates of photoautotrophic growth with NH4+ and of dark O2 uptake, but it failed to grow either under N2-fixing conditions or in the dark with organic carbon sources. A wild-type copy of zwf in trans in the zwf mutant strain restored only 25% of the G6PD specific activity, but the defective N2 fixation and dark growth phenotypes were nearly completely complemented. Transcript analysis established that zwf is in an operon also containing genes encoding two other enzymes of the oxidative pentose phosphate cycle, fructose-1,6-bisphosphatase and transaldolase, as well as a previously undescribed gene (designated opcA) that is cotranscribed with zwf. Inactivation of opcA yielded a growth phenotype identical to that of the zwf mutant, including a 98% decrease, relative to the wild type, in apparent G6PD specific activity. The growth phenotype and lesion of G6PD activity in the opcA mutant were complemented in trans with a wild-type copy of opcA. In addition, placement in trans of a multicopy plasmid containing the wild-type copies of both zwf and opcA in the zwf mutant resulted in an approximately 20-fold stimulation of G6PD activity, relative to the wild type, complete restoration of nitrogenase activity, and a slight stimulation of N2-dependent photoautotrophic growth and fructose-supported dark growth. These results unequivocally establish that G6PD, and most likely the oxidative pentose phosphate pathway, represents the essential catabolic route for providing reductant for nitrogen fixation and respiration in differentiated heterocysts and for dark growth of vegetative cells. Moreover, the opcA gene product is involved by an as yet unknown mechanism in G6PD synthesis or catalytic activity.

Full Text

The Full Text of this article is available as a PDF (430.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Brendel V., Trifonov E. N. A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res. 1984 May 25;12(10):4411–4427. doi: 10.1093/nar/12.10.4411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Broedel S. E., Jr, Wolf R. E., Jr Genetic tagging, cloning, and DNA sequence of the Synechococcus sp. strain PCC 7942 gene (gnd) encoding 6-phosphogluconate dehydrogenase. J Bacteriol. 1990 Jul;172(7):4023–4031. doi: 10.1128/jb.172.7.4023-4031.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Broedel S. E., Jr, Wolf R. E., Jr Growth-phase-dependent induction of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase in the cyanobacterium Synechococcus sp. PCC7942. Gene. 1991 Dec 20;109(1):71–79. doi: 10.1016/0378-1119(91)90590-8. [DOI] [PubMed] [Google Scholar]
  6. Buikema W. J., Haselkorn R. Isolation and complementation of nitrogen fixation mutants of the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol. 1991 Mar;173(6):1879–1885. doi: 10.1128/jb.173.6.1879-1885.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cai Y. P., Wolk C. P. Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol. 1990 Jun;172(6):3138–3145. doi: 10.1128/jb.172.6.3138-3145.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen M. F., Wallis J. G., Campbell E. L., Meeks J. C. Transposon mutagenesis of Nostoc sp. strain ATCC 29133, a filamentous cyanobacterium with multiple cellular differentiation alternatives. Microbiology. 1994 Dec;140(Pt 12):3233–3240. doi: 10.1099/13500872-140-12-3233. [DOI] [PubMed] [Google Scholar]
  9. Doolittle W. F., Singer R. A. Mutational analysis of dark endogenous metabolism in the blue-green bacterium Anacystis nidulans. J Bacteriol. 1974 Sep;119(3):677–683. doi: 10.1128/jb.119.3.677-683.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doolittle W. F. The cyanobacterial genome, its expression, and the control of that expression. Adv Microb Physiol. 1979;20:1–102. doi: 10.1016/s0065-2911(08)60206-4. [DOI] [PubMed] [Google Scholar]
  11. Elhai J., Wolk C. P. A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene. 1988 Aug 15;68(1):119–138. doi: 10.1016/0378-1119(88)90605-1. [DOI] [PubMed] [Google Scholar]
  12. Ernst A., Black T., Cai Y., Panoff J. M., Tiwari D. N., Wolk C. P. Synthesis of nitrogenase in mutants of the cyanobacterium Anabaena sp. strain PCC 7120 affected in heterocyst development or metabolism. J Bacteriol. 1992 Oct;174(19):6025–6032. doi: 10.1128/jb.174.19.6025-6032.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ernst A., Reich S., Böger P. Modification of dinitrogenase reductase in the cyanobacterium Anabaena variabilis due to C starvation and ammonia. J Bacteriol. 1990 Feb;172(2):748–755. doi: 10.1128/jb.172.2.748-755.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Favaloro J., Treisman R., Kamen R. Transcription maps of polyoma virus-specific RNA: analysis by two-dimensional nuclease S1 gel mapping. Methods Enzymol. 1980;65(1):718–749. doi: 10.1016/s0076-6879(80)65070-8. [DOI] [PubMed] [Google Scholar]
  15. Fay P. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev. 1992 Jun;56(2):340–373. doi: 10.1128/mr.56.2.340-373.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grant S. G., Jessee J., Bloom F. R., Hanahan D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4645–4649. doi: 10.1073/pnas.87.12.4645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jobling M. G., Holmes R. K. Construction of vectors with the p15a replicon, kanamycin resistance, inducible lacZ alpha and pUC18 or pUC19 multiple cloning sites. Nucleic Acids Res. 1990 Sep 11;18(17):5315–5316. doi: 10.1093/nar/18.17.5315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lambert G., Carr N. A restriction map of plasmid pDC1 from the filamentous cyanobacterium Nostoc sp. MAC PCC 8009. Plasmid. 1983 Sep;10(2):196–198. doi: 10.1016/0147-619x(83)90072-0. [DOI] [PubMed] [Google Scholar]
  19. Lex M., Carr N. G. The metabolism of glucose by heterocysts and vegetative cells of Anabaena cylindrica. Arch Microbiol. 1974;101(2):161–167. doi: 10.1007/BF00455936. [DOI] [PubMed] [Google Scholar]
  20. Meeks J. C., Wycoff K. L., Chapman J. S., Enderlin C. S. Regulation of expression of nitrate and dinitrogen assimilation by anabaena species. Appl Environ Microbiol. 1983 Apr;45(4):1351–1359. doi: 10.1128/aem.45.4.1351-1359.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neuer G., Bothe H. The pyruvate: ferredoxin oxidoreductase in heterocysts of the cyanobacterium Anabaena cylindrica. Biochim Biophys Acta. 1982 Jun 16;716(3):358–365. doi: 10.1016/0304-4165(82)90028-9. [DOI] [PubMed] [Google Scholar]
  22. Papen H., Neuer G., Refaian M., Bothe H. The isocitrate dehydrogenase from cyanobacteria. Arch Microbiol. 1983 Jan;134(1):73–79. doi: 10.1007/BF00429411. [DOI] [PubMed] [Google Scholar]
  23. Parke D. Construction of mobilizable vectors derived from plasmids RP4, pUC18 and pUC19. Gene. 1990 Sep 1;93(1):135–137. doi: 10.1016/0378-1119(90)90147-j. [DOI] [PubMed] [Google Scholar]
  24. Pelroy R. A., Bassham J. A. Kinetics of glucose incorporation by Aphanocapsa 6714. J Bacteriol. 1973 Sep;115(3):943–948. doi: 10.1128/jb.115.3.943-948.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pelroy R. A., Bassham J. A. Photosynthetic and dark carbon metabolism in unicellular blue-green algae. Arch Mikrobiol. 1972;86(1):25–38. doi: 10.1007/BF00412397. [DOI] [PubMed] [Google Scholar]
  26. Pelroy R. A., Levine G. A., Bassham J. A. Kinetics of light-dark CO2 fixation and glucose assimilation by Aphanocapsa 6714. J Bacteriol. 1976 Nov;128(2):633–643. doi: 10.1128/jb.128.2.633-643.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sanchez J. J., Palleroni N. J., Doudoroff M. Lactate dehydrogenases in cyanobacteria. Arch Microbiol. 1975 Jun 20;104(1):57–65. doi: 10.1007/BF00447300. [DOI] [PubMed] [Google Scholar]
  28. Scanlan D. J., Newman J., Sebaihia M., Mann N. H., Carr N. G. Cloning and sequence analysis of the glucose-6-phosphate dehydrogenase gene from the cyanobacterium Synechococcus PCC 7942. Plant Mol Biol. 1992 Aug;19(5):877–880. doi: 10.1007/BF00027085. [DOI] [PubMed] [Google Scholar]
  29. Scanlan D. J., Sundaram S., Newman J., Mann N. H., Carr N. G. Characterization of a zwf mutant of Synechococcus sp. strain PCC 7942. J Bacteriol. 1995 May;177(9):2550–2553. doi: 10.1128/jb.177.9.2550-2553.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schaeffer F., Stanier R. Y. Glucose-6-phosphate dehydrogenase of Anabaena sp. Kinetic and molecular properties. Arch Microbiol. 1978 Jan 23;116(1):9–19. doi: 10.1007/BF00408728. [DOI] [PubMed] [Google Scholar]
  31. Schmidt-Goff C. M., Federspiel N. A. In vivo and in vitro footprinting of a light-regulated promoter in the cyanobacterium Fremyella diplosiphon. J Bacteriol. 1993 Mar;175(6):1806–1813. doi: 10.1128/jb.175.6.1806-1813.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Summers M. L., Meeks J. C., Chu S., Wolf R. E., Jr Nucleotide sequence of an operon in Nostoc sp. strain ATCC 29133 encoding four genes of the oxidative pentose phosphate cycle. Plant Physiol. 1995 Jan;107(1):267–268. doi: 10.1104/pp.107.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tacon W., Bhamra S., Sunar B., Sherratt D. Structure and function of plasmid ColK. Plasmid. 1981 Nov;6(3):358–359. doi: 10.1016/0147-619x(81)90044-5. [DOI] [PubMed] [Google Scholar]
  34. Udvardy J., Borbely G., Juhåsz A., Farkas G. L. Thioredoxins and the redox modulation of glucose-6-phosphate dehydrogenase in Anabaena sp. strain PCC 7120 vegetative cells and heterocysts. J Bacteriol. 1984 Feb;157(2):681–683. doi: 10.1128/jb.157.2.681-683.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Winkenbach F., Wolk C. P. Activities of enzymes of the oxidative and the reductive pentose phosphate pathways in heterocysts of a blue-green alga. Plant Physiol. 1973 Nov;52(5):480–483. doi: 10.1104/pp.52.5.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wolk C. P. Movement of carbon from vegetative cells to heterocysts in Anabaena cylindrica. J Bacteriol. 1968 Dec;96(6):2138–2143. doi: 10.1128/jb.96.6.2138-2143.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zehr J. P., Wyman M., Miller V., Duguay L., Capone D. G. Modification of the Fe Protein of Nitrogenase in Natural Populations of Trichodesmium thiebautii. Appl Environ Microbiol. 1993 Mar;59(3):669–676. doi: 10.1128/aem.59.3.669-676.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES