Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Nov;177(21):6195–6200. doi: 10.1128/jb.177.21.6195-6200.1995

Purification and characterization of a benzylviologen-linked, tungsten-containing aldehyde oxidoreductase from Desulfovibrio gigas.

C M Hensgens 1, W R Hagen 1, T A Hansen 1
PMCID: PMC177460  PMID: 7592385

Abstract

Desulfovibrio gigas NCIMB 9332 cells grown in ethanol-containing medium with 0.1 microM tungstate contained a benzylviologen-linked aldehyde oxidoreductase. The enzyme was purified to electrophoretic homogeneity and found to be a homodimer with a subunit M(r) of 62,000. It contained 0.68 +/- 0.08 W, 4.8 Fe, and 3.2 +/- 0.2 labile S per subunit. After acid iodine oxidation of the purified enzyme, a fluorescence spectrum typical for form A of molybdopterin was obtained. Acetaldehyde, propionaldehyde, and benzaldehyde were excellent substrates, with apparent Km values of 12.5, 10.8, and 20 microM, respectively. The natural electron acceptor is not yet known; benzylviologen was used as an artificial electron acceptor (apparent Km, 0.55 mM). The enzyme was activated by potassium ions and strongly inhibited by cyanide, arsenite, and iodoacetate. In the as-isolated enzyme, electron paramagnetic resonance studies readily detected W(V) as a complex signal with g values in the range of 1.84 to 1.97. The dithionite-reduced enzyme exhibited a broad signal at low temperature with g = 2.04 and 1.92; this is indicative of a [4Fe-4S]1+ cluster interacting with a second paramagnet, possibly the S = 1 system of W(IV). Until now W-containing aldehyde oxidoreductases had only been found in two Clostridium strains and two hyperthermophilic archaea. The D. gigas enzyme is the first example of such an enzyme in a gram-negative bacterium.

Full Text

The Full Text of this article is available as a PDF (289.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barata B. A., LeGall J., Moura J. J. Aldehyde oxidoreductase activity in Desulfovibrio gigas: in vitro reconstitution of an electron-transfer chain from aldehydes to the production of molecular hydrogen. Biochemistry. 1993 Nov 2;32(43):11559–11568. doi: 10.1021/bi00094a012. [DOI] [PubMed] [Google Scholar]
  2. Bertram P. A., Schmitz R. A., Linder D., Thauer R. K. Tungstate can substitute for molybdate in sustaining growth of Methanobacterium thermoautotrophicum. Identification and characterization of a tungsten isoenzyme of formylmethanofuran dehydrogenase. Arch Microbiol. 1994;161(3):220–228. doi: 10.1007/BF00248696. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Cardenas J., Mortenson L. E. Determination of molybdenum and tungsten in biological materials. Anal Biochem. 1974 Aug;60(2):372–381. doi: 10.1016/0003-2697(74)90244-9. [DOI] [PubMed] [Google Scholar]
  5. Chan M. K., Mukund S., Kletzin A., Adams M. W., Rees D. C. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science. 1995 Mar 10;267(5203):1463–1469. doi: 10.1126/science.7878465. [DOI] [PubMed] [Google Scholar]
  6. Chen J. S., Mortenson L. E. Inhibition of methylene blue formation during determination of the acid-labile sulfide of iron-sulfur protein samples containing dithionite. Anal Biochem. 1977 May 1;79(1-2):157–165. doi: 10.1016/0003-2697(77)90390-6. [DOI] [PubMed] [Google Scholar]
  7. Chen L., Liu M. Y., LeGall J. Isolation and characterization of flavoredoxin, a new flavoprotein that permits in vitro reconstitution of an electron transfer chain from molecular hydrogen to sulfite reduction in the bacterium Desulfovibrio gigas. Arch Biochem Biophys. 1993 May 15;303(1):44–50. doi: 10.1006/abbi.1993.1253. [DOI] [PubMed] [Google Scholar]
  8. Deaton J. C., Solomon E. I., Watt G. D., Wetherbee P. J., Durfor C. N. Electron paramagnetic resonance studies of the tungsten-containing formate dehydrogenase from Clostridium thermoaceticum. Biochem Biophys Res Commun. 1987 Dec 16;149(2):424–430. doi: 10.1016/0006-291x(87)90384-6. [DOI] [PubMed] [Google Scholar]
  9. Fish W. W. Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. Methods Enzymol. 1988;158:357–364. doi: 10.1016/0076-6879(88)58067-9. [DOI] [PubMed] [Google Scholar]
  10. Hensgens C. M., Vonck J., Van Beeumen J., van Bruggen E. F., Hansen T. A. Purification and characterization of an oxygen-labile, NAD-dependent alcohol dehydrogenase from Desulfovibrio gigas. J Bacteriol. 1993 May;175(10):2859–2863. doi: 10.1128/jb.175.10.2859-2863.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson J. L., Rajagopalan K. V. Structural and metabolic relationship between the molybdenum cofactor and urothione. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6856–6860. doi: 10.1073/pnas.79.22.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Mukund S., Adams M. W. Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcus litoralis. A role for tungsten in peptide catabolism. J Biol Chem. 1993 Jun 25;268(18):13592–13600. [PubMed] [Google Scholar]
  14. Mukund S., Adams M. W. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem. 1995 Apr 14;270(15):8389–8392. doi: 10.1074/jbc.270.15.8389. [DOI] [PubMed] [Google Scholar]
  15. Mukund S., Adams M. W. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway. J Biol Chem. 1991 Aug 5;266(22):14208–14216. [PubMed] [Google Scholar]
  16. Pierik A. J., Hagen W. R. S = 9/2 EPR signals are evidence against coupling between the siroheme and the Fe/S cluster prosthetic groups in Desulfovibrio vulgaris (Hildenborough) dissimilatory sulfite reductase. Eur J Biochem. 1991 Jan 30;195(2):505–516. doi: 10.1111/j.1432-1033.1991.tb15731.x. [DOI] [PubMed] [Google Scholar]
  17. Poels P. A., Groen B. W., Duine J. A. NAD(P)+-independent aldehyde dehydrogenase from Pseudomonas testosteroni. A novel type of molybdenum-containing hydroxylase. Eur J Biochem. 1987 Aug 3;166(3):575–579. doi: 10.1111/j.1432-1033.1987.tb13552.x. [DOI] [PubMed] [Google Scholar]
  18. Rajagopalan K. V., Johnson J. L. The pterin molybdenum cofactors. J Biol Chem. 1992 May 25;267(15):10199–10202. [PubMed] [Google Scholar]
  19. Romão M. J., Barata B. A., Archer M., Lobeck K., Moura I., Carrondo M. A., LeGall J., Lottspeich F., Huber R., Moura J. J. Subunit composition, crystallization and preliminary crystallographic studies of the Desulfovibrio gigas aldehyde oxidoreductase containing molybdenum and [2Fe-2S] centers. Eur J Biochem. 1993 Aug 1;215(3):729–732. doi: 10.1111/j.1432-1033.1993.tb18085.x. [DOI] [PubMed] [Google Scholar]
  20. Santos H., Fareleira P., Xavier A. V., Chen L., Liu M. Y., LeGall J. Aerobic metabolism of carbon reserves by the "obligate anaerobe" Desulfovibrio gigas. Biochem Biophys Res Commun. 1993 Sep 15;195(2):551–557. doi: 10.1006/bbrc.1993.2081. [DOI] [PubMed] [Google Scholar]
  21. Schmitz R. A., Albracht S. P., Thauer R. K. A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur J Biochem. 1992 Nov 1;209(3):1013–1018. doi: 10.1111/j.1432-1033.1992.tb17376.x. [DOI] [PubMed] [Google Scholar]
  22. Schmitz R. A., Albracht S. P., Thauer R. K. Properties of the tungsten-substituted molybdenum formylmethanofuran dehydrogenase from Methanobacterium wolfei. FEBS Lett. 1992 Aug 31;309(1):78–81. doi: 10.1016/0014-5793(92)80743-z. [DOI] [PubMed] [Google Scholar]
  23. Thoenes U., Flores O. L., Neves A., Devreese B., Van Beeumen J. J., Huber R., Romão M. J., LeGall J., Moura J. J., Rodrigues-Pousada C. Molecular cloning and sequence analysis of the gene of the molybdenum-containing aldehyde oxido-reductase of Desulfovibrio gigas. The deduced amino acid sequence shows similarity to xanthine dehydrogenase. Eur J Biochem. 1994 Mar 15;220(3):901–910. doi: 10.1111/j.1432-1033.1994.tb18693.x. [DOI] [PubMed] [Google Scholar]
  24. Turner N., Barata B., Bray R. C., Deistung J., Le Gall J., Moura J. J. The molybdenum iron-sulphur protein from Desulfovibrio gigas as a form of aldehyde oxidase. Biochem J. 1987 May 1;243(3):755–761. doi: 10.1042/bj2430755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. White H., Feicht R., Huber C., Lottspeich F., Simon H. Purification and some properties of the tungsten-containing carboxylic acid reductase from Clostridium formicoaceticum. Biol Chem Hoppe Seyler. 1991 Nov;372(11):999–1005. doi: 10.1515/bchm3.1991.372.2.999. [DOI] [PubMed] [Google Scholar]
  26. White H., Strobl G., Feicht R., Simon H. Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes. Eur J Biochem. 1989 Sep 1;184(1):89–96. doi: 10.1111/j.1432-1033.1989.tb14993.x. [DOI] [PubMed] [Google Scholar]
  27. Yamamoto I., Saiki T., Liu S. M., Ljungdahl L. G. Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem. 1983 Feb 10;258(3):1826–1832. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES