Abstract
A system for studying the in vivo activity of Rhizobium NodC protein in Escherichia coli has been developed. Using thin-layer chromatography, high-performance liquid chromatography, and mass spectrometry, we show that in this system R. leguminosarum bv. viciae NodC protein directs the synthesis of chitinpentaose, chitintetraose, chitintriose, and two as yet unidentified modified chitin oligosaccharides.
Full Text
The Full Text of this article is available as a PDF (479.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Bugg T. D., Brandish P. E. From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis. FEMS Microbiol Lett. 1994 Jun 15;119(3):255–262. doi: 10.1111/j.1574-6968.1994.tb06898.x. [DOI] [PubMed] [Google Scholar]
- Bulawa C. E., Wasco W. Chitin and nodulation. Nature. 1991 Oct 24;353(6346):710–710. doi: 10.1038/353710b0. [DOI] [PubMed] [Google Scholar]
- Carlson R. W., Price N. P., Stacey G. The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Mol Plant Microbe Interact. 1994 Nov-Dec;7(6):684–695. doi: 10.1094/mpmi-7-0684. [DOI] [PubMed] [Google Scholar]
- Dénarié J., Cullimore J. Lipo-oligosaccharide nodulation factors: a minireview new class of signaling molecules mediating recognition and morphogenesis. Cell. 1993 Sep 24;74(6):951–954. doi: 10.1016/0092-8674(93)90717-5. [DOI] [PubMed] [Google Scholar]
- Geremia R. A., Mergaert P., Geelen D., Van Montagu M., Holsters M. The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2669–2673. doi: 10.1073/pnas.91.7.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horst M. N. The biosynthesis of crustacean chitin. Isolation and characterization of polyprenol-linked intermediates from brine shrimp microsomes. Arch Biochem Biophys. 1983 May;223(1):254–263. doi: 10.1016/0003-9861(83)90590-8. [DOI] [PubMed] [Google Scholar]
- Lerouge P. Symbiotic host specificity between leguminous plants and rhizobia is determined by substituted and acylated glucosamine oligosaccharide signals. Glycobiology. 1994 Apr;4(2):127–134. doi: 10.1093/glycob/4.2.127. [DOI] [PubMed] [Google Scholar]
- Matthysse A. G., Thomas D. L., White A. R. Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol. 1995 Feb;177(4):1076–1081. doi: 10.1128/jb.177.4.1076-1081.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosa F., Sargent T. D., Rebbert M. L., Michaels G. S., Jamrich M., Grunz H., Jonas E., Winkles J. A., Dawid I. B. Accumulation and decay of DG42 gene products follow a gradient pattern during Xenopus embryogenesis. Dev Biol. 1988 Sep;129(1):114–123. doi: 10.1016/0012-1606(88)90166-2. [DOI] [PubMed] [Google Scholar]
- Spaink H. P., Wijfjes A. H., van der Drift K. M., Haverkamp J., Thomas-Oates J. E., Lugtenberg B. J. Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum. Mol Microbiol. 1994 Sep;13(5):821–831. doi: 10.1111/j.1365-2958.1994.tb00474.x. [DOI] [PubMed] [Google Scholar]
- Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
- Sutherland I. W. Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Annu Rev Microbiol. 1985;39:243–270. doi: 10.1146/annurev.mi.39.100185.001331. [DOI] [PubMed] [Google Scholar]
- Thomas-Oates J. E., Dell A. Fast atom bombardment-mass spectrometry strategies for analysing glycoprotein glycans. Biochem Soc Trans. 1989 Feb;17(1):243–245. doi: 10.1042/bst0170243. [DOI] [PubMed] [Google Scholar]