Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Nov;177(22):6401–6410. doi: 10.1128/jb.177.22.6401-6410.1995

Cloning and characterization of a gene involved in aerial mycelium formation in Streptomyces griseus.

N Kudo 1, M Kimura 1, T Beppu 1, S Horinouchi 1
PMCID: PMC177489  PMID: 7592414

Abstract

A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) is essentially required for aerial mycelium formation and streptomycin production in Streptomyces griseus. A DNA fragment which induced aerial mycelium formation and sporulation in an A-factor-deficient mutant strain, S. griseus HH1, was cloned from this strain on a high-copy-number plasmid. Subcloning and nucleotide sequencing revealed that one open reading frame with 218 amino acids, named AmfC, served as a multicopy suppressor of the aerial mycelium-defective phenotype of the A-factor-deficient strain. The amfC gene did not restore A-factor or streptomycin production, indicating that amfC is involved in aerial mycelium formation independently of secondary metabolic function. Disruption of the chromosomal amfC gene in the wild-type S. griseus strain caused a severe reduction in the abundance of spores but no effect on the shape or size of the spores. The infrequent sporulation of the amfC disruptant was reversed by introduction of amfC on a plasmid. The amfC-defective phenotype was also restored by the orf1590 gene but not by the amfR-amfA-amfB gene cluster. Nucleotide sequences homologous to the amfC gene were distributed in all of 12 Streptomyces species tested, including Streptomyces coelicolor A3(2). The amfC homolog of S. coelicolor A3(2) was cloned and its nucleotide sequence was determined. The AmfC products of S. griseus and S. coelicolor A3(2) showed a 60% identity in their amino acid sequences. Introduction of the amfC gene of S. coelicolor A3(2) into strain HH1 induced aerial mycelium formation and sporulation, which suggests that both play the same functional role in morphogenesis in the strains.

Full Text

The Full Text of this article is available as a PDF (1,020.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babcock M. J., Kendrick K. E. Cloning of DNA involved in sporulation of Streptomyces griseus. J Bacteriol. 1988 Jun;170(6):2802–2808. doi: 10.1128/jb.170.6.2802-2808.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babcock M. J., Kendrick K. E. Transcriptional and translational features of a sporulation gene of Streptomyces griseus. Gene. 1990 Oct 30;95(1):57–63. doi: 10.1016/0378-1119(90)90413-l. [DOI] [PubMed] [Google Scholar]
  3. Beck E., Ludwig G., Auerswald E. A., Reiss B., Schaller H. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene. 1982 Oct;19(3):327–336. doi: 10.1016/0378-1119(82)90023-3. [DOI] [PubMed] [Google Scholar]
  4. Bibb M. J., Findlay P. R., Johnson M. W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984 Oct;30(1-3):157–166. doi: 10.1016/0378-1119(84)90116-1. [DOI] [PubMed] [Google Scholar]
  5. Chater K. F. Genetics of differentiation in Streptomyces. Annu Rev Microbiol. 1993;47:685–713. doi: 10.1146/annurev.mi.47.100193.003345. [DOI] [PubMed] [Google Scholar]
  6. Hara O., Beppu T. Induction of streptomycin-inactivating enzyme by A-factor in Streptomyces griseus. J Antibiot (Tokyo) 1982 Sep;35(9):1208–1215. doi: 10.7164/antibiotics.35.1208. [DOI] [PubMed] [Google Scholar]
  7. Hara O., Beppu T. Mutants blocked in streptomycin production in Streptomyces griseus - the role of A-factor. J Antibiot (Tokyo) 1982 Mar;35(3):349–358. doi: 10.7164/antibiotics.35.349. [DOI] [PubMed] [Google Scholar]
  8. Horinouchi S., Beppu T. A-factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus. Mol Microbiol. 1994 Jun;12(6):859–864. doi: 10.1111/j.1365-2958.1994.tb01073.x. [DOI] [PubMed] [Google Scholar]
  9. Horinouchi S., Beppu T. Autoregulatory factors and communication in actinomycetes. Annu Rev Microbiol. 1992;46:377–398. doi: 10.1146/annurev.mi.46.100192.002113. [DOI] [PubMed] [Google Scholar]
  10. Horinouchi S., Beppu T. Regulation of secondary metabolism and cell differentiation in Streptomyces: A-factor as a microbial hormone and the AfsR protein as a component of a two-component regulatory system. Gene. 1992 Jun 15;115(1-2):167–172. doi: 10.1016/0378-1119(92)90555-4. [DOI] [PubMed] [Google Scholar]
  11. Horinouchi S., Kumada Y., Beppu T. Unstable genetic determinant of A-factor biosynthesis in streptomycin-producing organisms: cloning and characterization. J Bacteriol. 1984 May;158(2):481–487. doi: 10.1128/jb.158.2.481-487.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kakinuma S., Takada Y., Ikeda H., Tanaka H., Omura S., Hopwood D. A. Cloning of large DNA fragments, which hybridize with actinorhodin biosynthesis genes, from kalafungin and nanaomycin A methyl ester producers and identification of genes for kalafungin biosynthesis of the kalafungin producer. J Antibiot (Tokyo) 1991 Sep;44(9):995–1005. doi: 10.7164/antibiotics.44.995. [DOI] [PubMed] [Google Scholar]
  13. Katz E., Thompson C. J., Hopwood D. A. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol. 1983 Sep;129(9):2703–2714. doi: 10.1099/00221287-129-9-2703. [DOI] [PubMed] [Google Scholar]
  14. Khokhlov A. S., Tovarova I. I., Borisova L. N., Pliner S. A., Shevchenko L. N., Kornitskaia E. Ia, Ivkina N. S., Rapoport I. A. A-faktor, obespechivaiushchii biosintez streptomitsina mutantnym shtammom Actinomyces streptomycini. Dokl Akad Nauk SSSR. 1967 Nov-Dec;177(1):232–235. [PubMed] [Google Scholar]
  15. Kieser T., Hopwood D. A., Wright H. M., Thompson C. J. pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet. 1982;185(2):223–228. doi: 10.1007/BF00330791. [DOI] [PubMed] [Google Scholar]
  16. Lawlor E. J., Baylis H. A., Chater K. F. Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev. 1987 Dec;1(10):1305–1310. doi: 10.1101/gad.1.10.1305. [DOI] [PubMed] [Google Scholar]
  17. Ma H., Kendall K. Cloning and analysis of a gene cluster from Streptomyces coelicolor that causes accelerated aerial mycelium formation in Streptomyces lividans. J Bacteriol. 1994 Jun;176(12):3800–3811. doi: 10.1128/jb.176.12.3800-3811.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matsumoto A., Hong S. K., Ishizuka H., Horinouchi S., Beppu T. Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene. 1994 Aug 19;146(1):47–56. doi: 10.1016/0378-1119(94)90832-x. [DOI] [PubMed] [Google Scholar]
  19. McCue L. A., Kwak J., Babcock M. J., Kendrick K. E. Molecular analysis of sporulation in Streptomyces griseus. Gene. 1992 Jun 15;115(1-2):173–179. doi: 10.1016/0378-1119(92)90556-5. [DOI] [PubMed] [Google Scholar]
  20. Merrick M. J. A morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor. J Gen Microbiol. 1976 Oct;96(2):299–315. doi: 10.1099/00221287-96-2-299. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  23. Ueda K., Miyake K., Horinouchi S., Beppu T. A gene cluster involved in aerial mycelium formation in Streptomyces griseus encodes proteins similar to the response regulators of two-component regulatory systems and membrane translocators. J Bacteriol. 1993 Apr;175(7):2006–2016. doi: 10.1128/jb.175.7.2006-2016.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vujaklija D., Ueda K., Hong S. K., Beppu T., Horinouchi S. Identification of an A-factor-dependent promoter in the streptomycin biosynthetic gene cluster of Streptomyces griseus. Mol Gen Genet. 1991 Sep;229(1):119–128. doi: 10.1007/BF00264220. [DOI] [PubMed] [Google Scholar]
  25. Ward J. M., Janssen G. R., Kieser T., Bibb M. J., Buttner M. J., Bibb M. J. Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet. 1986 Jun;203(3):468–478. doi: 10.1007/BF00422072. [DOI] [PubMed] [Google Scholar]
  26. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES