Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Nov;177(22):6411–6421. doi: 10.1128/jb.177.22.6411-6421.1995

Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2.

W Jiang 1, W W Metcalf 1, K S Lee 1, B L Wanner 1
PMCID: PMC177490  PMID: 7592415

Abstract

Two pathways exist for cleavage of the carbon-phosphorus (C-P) bond of phosphonates, the C-P lyase and the phosphonatase pathways. It was previously demonstrated that Escherichia coli carries genes (named phn) only for the C-P lyase pathway and that Enterobacter aerogenes carries genes for both pathways (K.-S. Lee, W. W. Metcalf, and B. L. Wanner, J. Bacteriol. 174:2501-2510, 1992). In contrast, here it is shown that Salmonella typhimurium LT2 carries genes only for the phosphonatase pathway. Genes for the S. typhimurium phosphonatase pathway were cloned by complementation of E. coli delta phn mutants. Genes for these pathways were proven not to be homologous and to lie in different chromosomal regions. The S. typhimurium phn locus lies near 10 min; the E. coli phn locus lies near 93 min. The S. typhimurium phn gene cluster is about 7.2 kb in length and, on the basis of gene fusion analysis, appears to consist of two (or more) genes or operons that are divergently transcribed. Like that of the E. coli phn locus, the expression of the S. typhimurium phn locus is activated under conditions of Pi limitation and is subject to Pho regulon control. This was shown both by complementation of the appropriate E. coli mutants and by the construction of S. typhimurium mutants with lesions in the phoB and pst loci, which are required for activation and inhibition of Pho regulon gene expression, respectively. Complementation studies indicate that the S. typhimurium phn locus probably includes genes both for phosphonate transport and for catalysis of C-P bond cleavage.

Full Text

The Full Text of this article is available as a PDF (634.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal D. K., Wanner B. L. A phoA structural gene mutation that conditionally affects formation of the enzyme bacterial alkaline phosphatase. J Bacteriol. 1990 Jun;172(6):3180–3190. doi: 10.1128/jb.172.6.3180-3190.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachmann B. J. Linkage map of Escherichia coli K-12, edition 8. Microbiol Rev. 1990 Jun;54(2):130–197. doi: 10.1128/mr.54.2.130-197.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bauer K., Benz R., Brass J., Boos W. Salmonella typhimurium contains an anion-selective outer membrane porin induced by phosphate starvation. J Bacteriol. 1985 Feb;161(2):813–816. doi: 10.1128/jb.161.2.813-816.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baumann H., Tzianabos A. O., Brisson J. R., Kasper D. L., Jennings H. J. Structural elucidation of two capsular polysaccharides from one strain of Bacteroides fragilis using high-resolution NMR spectroscopy. Biochemistry. 1992 Apr 28;31(16):4081–4089. doi: 10.1021/bi00131a026. [DOI] [PubMed] [Google Scholar]
  5. Benson N. R., Goldman B. S. Rapid mapping in Salmonella typhimurium with Mud-P22 prophages. J Bacteriol. 1992 Mar;174(5):1673–1681. doi: 10.1128/jb.174.5.1673-1681.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen C. M., Ye Q. Z., Zhu Z. M., Wanner B. L., Walsh C. T. Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B. J Biol Chem. 1990 Mar 15;265(8):4461–4471. [PubMed] [Google Scholar]
  7. Dumora C., Lacoste A. M., Cassaigne A. Phosphonoacetaldehyde hydrolase from Pseudomonas aeruginosa: purification properties and comparison with Bacillus cereus enzyme. Biochim Biophys Acta. 1989 Aug 31;997(3):193–198. doi: 10.1016/0167-4838(89)90186-6. [DOI] [PubMed] [Google Scholar]
  8. Dumora C., Lacoste A. M., Cassaigne A. Purification and properties of 2-aminoethylphosphonate:pyruvate aminotransferase from Pseudomonas aeruginosa. Eur J Biochem. 1983 Jun 1;133(1):119–125. doi: 10.1111/j.1432-1033.1983.tb07436.x. [DOI] [PubMed] [Google Scholar]
  9. Elliott T. Cloning, genetic characterization, and nucleotide sequence of the hemA-prfA operon of Salmonella typhimurium. J Bacteriol. 1989 Jul;171(7):3948–3960. doi: 10.1128/jb.171.7.3948-3960.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foster J. W., Spector M. P. Phosphate starvation regulon of Salmonella typhimurium. J Bacteriol. 1986 May;166(2):666–669. doi: 10.1128/jb.166.2.666-669.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hengge R., Larson T. J., Boos W. sn-Glycerol-3-phosphate transport in Salmonella typhimurium. J Bacteriol. 1983 Jul;155(1):186–195. doi: 10.1128/jb.155.1.186-195.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holloway B. W. Genetics for all bacteria. Annu Rev Microbiol. 1993;47:659–684. doi: 10.1146/annurev.mi.47.100193.003303. [DOI] [PubMed] [Google Scholar]
  13. Kennedy K. E., Thompson G. A., Jr Phosphonolipids: localization in surface membranes of Tetrahymena. Science. 1970 May 22;168(3934):989–991. doi: 10.1126/science.168.3934.989. [DOI] [PubMed] [Google Scholar]
  14. Lacoste A. M., Cassaigne A., Tamari M., Neuzil E. Transport de l'acide amino-2-éthylphosphonique chez Pseudomonas aeruginosa. Biochimie. 1976;58(6):703–712. doi: 10.1016/s0300-9084(76)80395-1. [DOI] [PubMed] [Google Scholar]
  15. Lacoste A. M., Dumora C., Ali B. R., Neuzil E., Dixon H. B. Utilization of 2-aminoethylarsonic acid in Pseudomonas aeruginosa. J Gen Microbiol. 1992 Jun;138(6):1283–1287. doi: 10.1099/00221287-138-6-1283. [DOI] [PubMed] [Google Scholar]
  16. Lacoste A. M., Dumora C., Balas L., Hammerschmidt F., Vercauteren J. Stereochemistry of the reaction catalysed by 2-aminoethylphosphonate aminotransferase. A 1H-NMR study. Eur J Biochem. 1993 Aug 1;215(3):841–844. doi: 10.1111/j.1432-1033.1993.tb18100.x. [DOI] [PubMed] [Google Scholar]
  17. Lee K. S., Metcalf W. W., Wanner B. L. Evidence for two phosphonate degradative pathways in Enterobacter aerogenes. J Bacteriol. 1992 Apr;174(8):2501–2510. doi: 10.1128/jb.174.8.2501-2510.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee S. H., Hidaka T., Nakashita H., Seto H. The carboxyphosphonoenolpyruvate synthase-encoding gene from the bialaphos-producing organism Streptomyces hygroscopicus. Gene. 1995 Feb 3;153(1):143–144. doi: 10.1016/0378-1119(94)00832-d. [DOI] [PubMed] [Google Scholar]
  19. Makino K., Kim S. K., Shinagawa H., Amemura M., Nakata A. Molecular analysis of the cryptic and functional phn operons for phosphonate use in Escherichia coli K-12. J Bacteriol. 1991 Apr;173(8):2665–2672. doi: 10.1128/jb.173.8.2665-2672.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Metcalf W. W., Jiang W., Wanner B. L. Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6K gamma origin plasmids at different copy numbers. Gene. 1994 Jan 28;138(1-2):1–7. doi: 10.1016/0378-1119(94)90776-5. [DOI] [PubMed] [Google Scholar]
  21. Metcalf W. W., Steed P. M., Wanner B. L. Identification of phosphate starvation-inducible genes in Escherichia coli K-12 by DNA sequence analysis of psi::lacZ(Mu d1) transcriptional fusions. J Bacteriol. 1990 Jun;172(6):3191–3200. doi: 10.1128/jb.172.6.3191-3200.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Metcalf W. W., Wanner B. L. Construction of new beta-glucuronidase cassettes for making transcriptional fusions and their use with new methods for allele replacement. Gene. 1993 Jul 15;129(1):17–25. doi: 10.1016/0378-1119(93)90691-u. [DOI] [PubMed] [Google Scholar]
  23. Metcalf W. W., Wanner B. L. Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli. Gene. 1993 Jul 15;129(1):27–32. doi: 10.1016/0378-1119(93)90692-v. [DOI] [PubMed] [Google Scholar]
  24. Metcalf W. W., Wanner B. L. Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi. J Bacteriol. 1991 Jan;173(2):587–600. doi: 10.1128/jb.173.2.587-600.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Metcalf W. W., Wanner B. L. Mutational analysis of an Escherichia coli fourteen-gene operon for phosphonate degradation, using TnphoA' elements. J Bacteriol. 1993 Jun;175(11):3430–3442. doi: 10.1128/jb.175.11.3430-3442.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Michetti P., Mahan M. J., Slauch J. M., Mekalanos J. J., Neutra M. R. Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infect Immun. 1992 May;60(5):1786–1792. doi: 10.1128/iai.60.5.1786-1792.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rosenberg H., La Nauze J. M. The metabolism of phosphonates by microorganisms. The transport of aminoethylphosphonic acid in Bacillus cereus. Biochim Biophys Acta. 1967 Jun 13;141(1):79–90. doi: 10.1016/0304-4165(67)90247-4. [DOI] [PubMed] [Google Scholar]
  28. Russell C. B., Thaler D. S., Dahlquist F. W. Chromosomal transformation of Escherichia coli recD strains with linearized plasmids. J Bacteriol. 1989 May;171(5):2609–2613. doi: 10.1128/jb.171.5.2609-2613.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sanderson K. E., Roth J. R. Linkage map of Salmonella typhimurium, edition VII. Microbiol Rev. 1988 Dec;52(4):485–532. doi: 10.1128/mr.52.4.485-532.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schlesinger M. J., Olsen R. Expression and localization of Escherichia coli alkaline phosphatase synthesized in Salmonella typhimurium cytoplasm. J Bacteriol. 1968 Nov;96(5):1601–1605. doi: 10.1128/jb.96.5.1601-1605.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Steed P. M., Wanner B. L. Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J Bacteriol. 1993 Nov;175(21):6797–6809. doi: 10.1128/jb.175.21.6797-6809.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wackett L. P., Wanner B. L., Venditti C. P., Walsh C. T. Involvement of the phosphate regulon and the psiD locus in carbon-phosphorus lyase activity of Escherichia coli K-12. J Bacteriol. 1987 Apr;169(4):1753–1756. doi: 10.1128/jb.169.4.1753-1756.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wanner B. L., Boline J. A. Mapping and molecular cloning of the phn (psiD) locus for phosphonate utilization in Escherichia coli. J Bacteriol. 1990 Mar;172(3):1186–1196. doi: 10.1128/jb.172.3.1186-1196.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wanner B. L., Chang B. D. The phoBR operon in Escherichia coli K-12. J Bacteriol. 1987 Dec;169(12):5569–5574. doi: 10.1128/jb.169.12.5569-5574.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wanner B. L., McSharry R. Phosphate-controlled gene expression in Escherichia coli K12 using Mudl-directed lacZ fusions. J Mol Biol. 1982 Jul 5;158(3):347–363. doi: 10.1016/0022-2836(82)90202-9. [DOI] [PubMed] [Google Scholar]
  36. Wanner B. L., Metcalf W. W. Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):133–139. doi: 10.1111/j.1574-6968.1992.tb14031.x. [DOI] [PubMed] [Google Scholar]
  37. Wanner B. L. Molecular genetics of carbon-phosphorus bond cleavage in bacteria. Biodegradation. 1994 Dec;5(3-4):175–184. doi: 10.1007/BF00696458. [DOI] [PubMed] [Google Scholar]
  38. Wilmes-Riesenberg M. R., Wanner B. L. TnphoA and TnphoA' elements for making and switching fusions for study of transcription, translation, and cell surface localization. J Bacteriol. 1992 Jul;174(14):4558–4575. doi: 10.1128/jb.174.14.4558-4575.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yagil E., Hermoni E. Repression of alkaline phosphatase in Salmonella typhimurium carrying a phoA+ phoR- episome from Escherichia coli. J Bacteriol. 1976 Nov;128(2):661–664. doi: 10.1128/jb.128.2.661-664.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. de Lederkremer R. M., Lima C., Ramirez M. I., Ferguson M. A., Homans S. W., Thomas-Oates J. Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi Epimastigotes. J Biol Chem. 1991 Dec 15;266(35):23670–23675. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES