Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Nov;177(22):6456–6461. doi: 10.1128/jb.177.22.6456-6461.1995

Organization and transcriptional regulation of the Escherichia coli K-12 D-serine tolerance locus.

M Nørregaard-Madsen 1, E McFall 1, P Valentin-Hansen 1
PMCID: PMC177495  PMID: 7592420

Abstract

We have reinvestigated the genetic organization and the transcription regulation of the dsd operon of Escherichia coli. By combining genetic and biochemical studies, it is demonstrated that the regulatory region of the operon and the gene encoding the specific regulator of D-serine tolerance (dsdC) had been misplaced in previous work on the dsd system. Also, the previous erroneous DNA sequence of the dsdC gene has been corrected. It turned out that an additional gene (dsdX) is present immediately upstream of dsdA (encoding D-serine deaminase) and that dsdC is located adjacent to dsdX. The dsdXA genes are cotranscribed from a common promoter region present in the dsdX-dsdC intercistronic region. The DsdC activator belongs to the LysR-type of transcriptional regulators and is absolutely required for dsdA expression. Additionally, the activity of the dsdXA promoter depends on the cyclic AMP receptor protein, and the two activators act in concert to synergistically activate transcription.

Full Text

The Full Text of this article is available as a PDF (377.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERTANI G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 1951 Sep;62(3):293–300. doi: 10.1128/jb.62.3.293-300.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bornstein-Forst S. M., McFall E., Palchaudhuri S. In vivo D-serine deaminase transcription start sites in wild-type Escherichia coli and in dsdA promoter mutants. J Bacteriol. 1987 Mar;169(3):1056–1060. doi: 10.1128/jb.169.3.1056-1060.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carothers A. M., McFall E., Palchaudhuri S. Physical mapping of the Escherichia coli D-serine deaminase region: contiguity of the dsd structural and regulatory genes. J Bacteriol. 1980 Apr;142(1):174–184. doi: 10.1128/jb.142.1.174-184.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Churchward G., Belin D., Nagamine Y. A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene. 1984 Nov;31(1-3):165–171. doi: 10.1016/0378-1119(84)90207-5. [DOI] [PubMed] [Google Scholar]
  5. Cosloy S. D., McFall E. Metabolism of D-serine in Escherichia coli K-12: mechanism of growth inhibition. J Bacteriol. 1973 May;114(2):685–694. doi: 10.1128/jb.114.2.685-694.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Federiuk C. S., Bayer R., Shafer J. A. Characterization of the catalytic pathway for D-serine dehydratase. Evidence for variation of the rate-determining step with substrate structure. J Biol Chem. 1983 May 10;258(9):5379–5385. [PubMed] [Google Scholar]
  8. Federiuk C. S., Shafer J. A. A reaction pathway for transimination of the pyridoxal 5'-phosphate in D-serine dehydratase by amino acids. J Biol Chem. 1983 May 10;258(9):5372–5378. [PubMed] [Google Scholar]
  9. Fujita Y., Fujita T., Miwa Y., Nihashi J., Aratani Y. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J Biol Chem. 1986 Oct 15;261(29):13744–13753. [PubMed] [Google Scholar]
  10. Gerdes K., Thisted T., Martinussen J. Mechanism of post-segregational killing by the hok/sok system of plasmid R1: sok antisense RNA regulates formation of a hok mRNA species correlated with killing of plasmid-free cells. Mol Microbiol. 1990 Nov;4(11):1807–1818. doi: 10.1111/j.1365-2958.1990.tb02029.x. [DOI] [PubMed] [Google Scholar]
  11. Heincz M. C., McFall E. Role of the dsdC activator in regulation of D-serine deaminase synthesis. J Bacteriol. 1978 Oct;136(1):96–103. doi: 10.1128/jb.136.1.96-103.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henikoff S., Haughn G. W., Calvo J. M., Wallace J. C. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6602–6606. doi: 10.1073/pnas.85.18.6602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kolb A., Busby S., Buc H., Garges S., Adhya S. Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem. 1993;62:749–795. doi: 10.1146/annurev.bi.62.070193.003533. [DOI] [PubMed] [Google Scholar]
  14. Lobell R. B., Schleif R. F. AraC-DNA looping: orientation and distance-dependent loop breaking by the cyclic AMP receptor protein. J Mol Biol. 1991 Mar 5;218(1):45–54. doi: 10.1016/0022-2836(91)90872-4. [DOI] [PubMed] [Google Scholar]
  15. Marceau M., McFall E., Lewis S. D., Shafer J. A. D-serine dehydratase from Escherichia coli. DNA sequence and identification of catalytically inactive glycine to aspartic acid variants. J Biol Chem. 1988 Nov 15;263(32):16926–16933. [PubMed] [Google Scholar]
  16. McFall E. Escherichia coli K-12 mutant forming a temperature-sensitive D-serine deaminase. J Bacteriol. 1975 Mar;121(3):1074–1077. doi: 10.1128/jb.121.3.1074-1077.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McFall E. Mapping of the d-serine deaminase region in Escherichia coli K-12. Genetics. 1967 Jan;55(1):91–99. doi: 10.1093/genetics/55.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McFall E., Nikam S. S., Palchaudhuri S. Effects of structural changes in the dsdA-dsdC intergenic region on D-serine deaminase synthesis. J Bacteriol. 1991 Feb;173(3):1161–1167. doi: 10.1128/jb.173.3.1161-1167.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McFall E. Role of adenosine 3',5'-cyclic monophosphate and its specific binding protein in the regulation of D-serine deaminase synthesis. J Bacteriol. 1973 Feb;113(2):781–785. doi: 10.1128/jb.113.2.781-785.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McFall E., Runkel L. DNA sequences of the D-serine deaminase control region and N-terminal portion of the structural gene. J Bacteriol. 1983 Jun;154(3):1508–1512. doi: 10.1128/jb.154.3.1508-1512.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McFall E. cis-acting proteins. J Bacteriol. 1986 Aug;167(2):429–432. doi: 10.1128/jb.167.2.429-432.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Merkel T. J., Dahl J. L., Ebright R. H., Kadner R. J. Transcription activation at the Escherichia coli uhpT promoter by the catabolite gene activator protein. J Bacteriol. 1995 Apr;177(7):1712–1718. doi: 10.1128/jb.177.7.1712-1718.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moazed D., Stern S., Noller H. F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol. 1986 Feb 5;187(3):399–416. doi: 10.1016/0022-2836(86)90441-9. [DOI] [PubMed] [Google Scholar]
  24. Palchaudhuri S., Patel V., McFall E. DNA sequence of the D-serine deaminase activator gene dsdC. J Bacteriol. 1988 Jan;170(1):330–334. doi: 10.1128/jb.170.1.330-334.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reizer A., Deutscher J., Saier M. H., Jr, Reizer J. Analysis of the gluconate (gnt) operon of Bacillus subtilis. Mol Microbiol. 1991 May;5(5):1081–1089. doi: 10.1111/j.1365-2958.1991.tb01880.x. [DOI] [PubMed] [Google Scholar]
  26. Richet E., Vidal-Ingigliardi D., Raibaud O. A new mechanism for coactivation of transcription initiation: repositioning of an activator triggered by the binding of a second activator. Cell. 1991 Sep 20;66(6):1185–1195. doi: 10.1016/0092-8674(91)90041-v. [DOI] [PubMed] [Google Scholar]
  27. Tabata S., Higashitani A., Takanami M., Akiyama K., Kohara Y., Nishimura Y., Nishimura A., Yasuda S., Hirota Y. Construction of an ordered cosmid collection of the Escherichia coli K-12 W3110 chromosome. J Bacteriol. 1989 Feb;171(2):1214–1218. doi: 10.1128/jb.171.2.1214-1218.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ushida C., Aiba H. Helical phase dependent action of CRP: effect of the distance between the CRP site and the -35 region on promoter activity. Nucleic Acids Res. 1990 Nov 11;18(21):6325–6330. doi: 10.1093/nar/18.21.6325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Valentin-Hansen P., Albrechtsen B., Løve Larsen J. E. DNA-protein recognition: demonstration of three genetically separated operator elements that are required for repression of the Escherichia coli deoCABD promoters by the DeoR repressor. EMBO J. 1986 Aug;5(8):2015–2021. doi: 10.1002/j.1460-2075.1986.tb04458.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wilson R. L., Stauffer G. V. DNA sequence and characterization of GcvA, a LysR family regulatory protein for the Escherichia coli glycine cleavage enzyme system. J Bacteriol. 1994 May;176(10):2862–2868. doi: 10.1128/jb.176.10.2862-2868.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES