Abstract
The grapevine is the natural host of the tumorigenic bacterium Agrobacterium vitis. Most of the A. vitis isolates can use tartrate, an unusually abundant compound in grapevine. The nopaline strain, AB4, contains a 170-kb conjugative plasmid (pTrAB4) encoding tartrate utilization. A 5.65-kb pTrAB4 region which enables non-tartrate-utilizing Agrobacterium tumefaciens to grow on tartrate was sequenced and mutagenized with the transcriptional fusion transposon Tn5-uidA1. This DNA fragment contains four intact open reading frames (ORFs) (ttuABCD) required for tartrate-dependent growth. The mutant phenotypes of each ORF, their homologies to published sequences, and their induction patterns allowed us to propose a model for tartrate utilization in A. vitis. ttuA encodes a LysR-like transcriptional activator and is transcribed in the absence of tartrate. ttuB codes for a protein with homology to transporter proteins and is required for entry of tartrate into bacteria. ttuC codes for a tartrate dehydrogenase, while ttuD lacks homology to known sequences; the growth properties of ttuD mutants suggest that TtuD catalyzes the second step in tartrate degradation. A fifth incomplete ORF (ttuE) encodes a pyruvate kinase which is induced by tartrate and required for optimal growth. Although the ttuABCD fragment allows growth of A. tumefaciens on tartrate, it does not provide full tartrate utilization in the original A. vitis background.
Full Text
The Full Text of this article is available as a PDF (384.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Currier T. C., Nester E. W. Isolation of covalently closed circular DNA of high molecular weight from bacteria. Anal Biochem. 1976 Dec;76(2):431–441. doi: 10.1016/0003-2697(76)90338-9. [DOI] [PubMed] [Google Scholar]
- DAGLEY S., TRUDGILL P. W. THE METABOLISM OF TARTARIC ACID BY A PSEUDOMONAS. A NEW PATHWAY. Biochem J. 1963 Oct;89:22–31. doi: 10.1042/bj0890022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ditta G., Stanfield S., Corbin D., Helinski D. R. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347–7351. doi: 10.1073/pnas.77.12.7347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furuyoshi S., Nawa Y., Kawabata N., Tanaka H., Soda K. Purification and characterization of a new NAD(+)-dependent enzyme, L-tartrate decarboxylase, from Pseudomonas sp. group Ve-2. J Biochem. 1991 Oct;110(4):520–525. doi: 10.1093/oxfordjournals.jbchem.a123613. [DOI] [PubMed] [Google Scholar]
- HURLBERT R. E., JAKOBY W. B. TARTARIC ACID METABOLISM. I. SUBUNITS OF L(+)-TARTARIC ACID DEHYDRASE. J Biol Chem. 1965 Jul;240:2772–2777. [PubMed] [Google Scholar]
- Harwood C. S., Nichols N. N., Kim M. K., Ditty J. L., Parales R. E. Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol. 1994 Nov;176(21):6479–6488. doi: 10.1128/jb.176.21.6479-6488.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imada K., Sato M., Tanaka N., Katsube Y., Matsuura Y., Oshima T. Three-dimensional structure of a highly thermostable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 A resolution. J Mol Biol. 1991 Dec 5;222(3):725–738. doi: 10.1016/0022-2836(91)90508-4. [DOI] [PubMed] [Google Scholar]
- Innes R. W., Hirose M. A., Kuempel P. L. Induction of nitrogen-fixing nodules on clover requires only 32 kilobase pairs of DNA from the Rhizobium trifolii symbiosis plasmid. J Bacteriol. 1988 Sep;170(9):3793–3802. doi: 10.1128/jb.170.9.3793-3802.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KRAMPITZ L. O., LYNEN F. MECHANISM OF TARTRATE DISSIMILATION. Biochem Z. 1964 Dec 7;341:97–108. [PubMed] [Google Scholar]
- Kohn L. D., Jakoby W. B. Tartaric acid metabolism. 3. The formation of glyceric acid. J Biol Chem. 1968 May 25;243(10):2465–2471. [PubMed] [Google Scholar]
- Kohn L. D., Packman P. M., Allen R. H., Jakoby W. B. Tartaric acid metabolism. V. Crystalline tartrate dehydrogenase. J Biol Chem. 1968 May 25;243(10):2479–2485. [PubMed] [Google Scholar]
- MARTIN W. R., FOSTER J. W. Adaptation patterns in the utilization of the stereo-isomers of tartaric acid by a pseudomonad. J Bacteriol. 1957 May;73(5):683–684. doi: 10.1128/jb.73.5.683-684.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma D. Q., Yanofsky M. F., Gordon M. P., Nester E. W. Characterization of Agrobacterium tumefaciens strains isolated from grapevine tumors in China. Appl Environ Microbiol. 1987 Jun;53(6):1338–1343. doi: 10.1128/aem.53.6.1338-1343.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marger M. D., Saier M. H., Jr A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993 Jan;18(1):13–20. doi: 10.1016/0968-0004(93)90081-w. [DOI] [PubMed] [Google Scholar]
- Mattanovich D., Rüker F., Machado A. C., Laimer M., Regner F., Steinkellner H., Himmler G., Katinger H. Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res. 1989 Aug 25;17(16):6747–6747. doi: 10.1093/nar/17.16.6747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohara O., Dorit R. L., Gilbert W. Direct genomic sequencing of bacterial DNA: the pyruvate kinase I gene of Escherichia coli. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6883–6887. doi: 10.1073/pnas.86.18.6883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panagopoulos C. G., Psallidas P. G. Characteristics of Greek Isolates of Agrobacterium tumefaciens (E. F. Smith & Townsend) Conn. J Appl Bacteriol. 1973 Jun;36(2):233–240. doi: 10.1111/j.1365-2672.1973.tb04096.x. [DOI] [PubMed] [Google Scholar]
- Perry K. L., Kado C. I. Characteristics of Ti plasmids from broad-host-range and ecologically specific biotype 2 and 3 strains of Agrobacterium tumefaciens. J Bacteriol. 1982 Jul;151(1):343–350. doi: 10.1128/jb.151.1.343-350.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reaney S. K., Begg C., Bungard S. J., Guest J. R. Identification of the L-tartrate dehydratase genes (ttdA and ttdB) of Escherichia coli and evolutionary relationship with the class I fumarase genes. J Gen Microbiol. 1993 Jul;139(7):1523–1530. doi: 10.1099/00221287-139-7-1523. [DOI] [PubMed] [Google Scholar]
- Renna M. C., Najimudin N., Winik L. R., Zahler S. A. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol. 1993 Jun;175(12):3863–3875. doi: 10.1128/jb.175.12.3863-3875.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodriguez-Palenzuela P., Burr T. J., Collmer A. Polygalacturonase is a virulence factor in Agrobacterium tumefaciens biovar 3. J Bacteriol. 1991 Oct;173(20):6547–6552. doi: 10.1128/jb.173.20.6547-6552.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHILO M. The enzymic conversion of the tartaric acids to oxaloacetic acid. J Gen Microbiol. 1957 Apr;16(2):472–481. doi: 10.1099/00221287-16-2-472. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schell M. A. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol. 1993;47:597–626. doi: 10.1146/annurev.mi.47.100193.003121. [DOI] [PubMed] [Google Scholar]
- Sharma S. B., Signer E. R. Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. Genes Dev. 1990 Mar;4(3):344–356. doi: 10.1101/gad.4.3.344. [DOI] [PubMed] [Google Scholar]
- Shaw C. H., Leemans J., Shaw C. H., van Montagu M., Schell J. A general method for the transfer of cloned genes to plant cells. Gene. 1983 Sep;23(3):315–330. doi: 10.1016/0378-1119(83)90021-5. [DOI] [PubMed] [Google Scholar]
- Tipton P. A., Beecher B. S. Tartrate dehydrogenase, a new member of the family of metal-dependent decarboxylating R-hydroxyacid dehydrogenases. Arch Biochem Biophys. 1994 Aug 15;313(1):15–21. doi: 10.1006/abbi.1994.1352. [DOI] [PubMed] [Google Scholar]
- Tipton P. A., Peisach J. Characterization of the multiple catalytic activities of tartrate dehydrogenase. Biochemistry. 1990 Feb 20;29(7):1749–1756. doi: 10.1021/bi00459a013. [DOI] [PubMed] [Google Scholar]
- Trinder P. Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J Clin Pathol. 1969 Mar;22(2):246–246. doi: 10.1136/jcp.22.2.246-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker D., Chia W. N., Muirhead H. Key residues in the allosteric transition of Bacillus stearothermophilus pyruvate kinase identified by site-directed mutagenesis. J Mol Biol. 1992 Nov 5;228(1):265–276. doi: 10.1016/0022-2836(92)90505-e. [DOI] [PubMed] [Google Scholar]
- Woehlke G., Dimroth P. Anaerobic growth of Salmonella typhimurium on L(+)- and D(-)-tartrate involves an oxaloacetate decarboxylase Na+ pump. Arch Microbiol. 1994;162(4):233–237. doi: 10.1007/BF00301843. [DOI] [PubMed] [Google Scholar]