Abstract
A511 is a broad-host-range, virulent myovirus for Listeria monocytogenes. The genes encoding major structural proteins of the capsid (cps) and tail sheath (tsh) were mapped to a 10.15-kb late gene fragment. We have determined the complete nucleotide sequence of this region and confirmed the identities of Cps (48.7 kDa) and Tsh (61.3 kDa) by N-terminal amino acid sequencing of both proteins. In addition, nine other open reading frames were identified. On the basis of amino acid sequence homologies to known phage-encoded proteins, some putative functions and locations could be assigned to some of the deduced gene products. We present evidence that the cps product is proteolytically cleaved between Lys-23 and Ser-24 to yield the 444-residue polypeptide found in the mature viral capsid. We also found that the N-terminal methionine is absent from the mature tail sheath protein. cps and tsh are late genes; mRNAs first appear 15 to 20 min after infection of L. monocytogenes. Northern (RNA) hybridizations of total late mRNA with specific oligonucleotide probes were used to determine the sizes of respective transcripts. Primer extension analyses enabled the positive identification of six late promoters, which were found to differ from those identified in the chromosome of Listeria spp. The bulk of transcripts from cps and tsh arise from two phage promoters with identical 13-nucleotide sequences (TGCTAGATTATAG [core region underlined]) in the -10 region which we speculate determines specific and timed expression of these genes. A 123-nucleotide leader sequence at the 5' end of the cps transcript was predicted to form a strong secondary structure (deltaG=-40.7 kcal [-170.3 kJ]/mol). Out results show that the strongly expressed A511 cps and tsh genes are included in two separate gene clusters and are independently regulated at the transcriptional level.
Full Text
The Full Text of this article is available as a PDF (527.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belasco J. G., Higgins C. F. Mechanisms of mRNA decay in bacteria: a perspective. Gene. 1988 Dec 10;72(1-2):15–23. doi: 10.1016/0378-1119(88)90123-0. [DOI] [PubMed] [Google Scholar]
- Ben-Bassat A., Bauer K., Chang S. Y., Myambo K., Boosman A., Chang S. Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol. 1987 Feb;169(2):751–757. doi: 10.1128/jb.169.2.751-757.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Botstein D. A theory of modular evolution for bacteriophages. Ann N Y Acad Sci. 1980;354:484–490. doi: 10.1111/j.1749-6632.1980.tb27987.x. [DOI] [PubMed] [Google Scholar]
- Brehm K., Haas A., Goebel W., Kreft J. A gene encoding a superoxide dismutase of the facultative intracellular bacterium Listeria monocytogenes. Gene. 1992 Sep 1;118(1):121–125. doi: 10.1016/0378-1119(92)90258-q. [DOI] [PubMed] [Google Scholar]
- Charpentier E., Gerbaud G., Courvalin P. Characterization of a new class of tetracycline-resistance gene tet(S) in Listeria monocytogenes BM4210. Gene. 1993 Sep 6;131(1):27–34. doi: 10.1016/0378-1119(93)90665-p. [DOI] [PubMed] [Google Scholar]
- Doi M., Wachi M., Ishino F., Tomioka S., Ito M., Sakagami Y., Suzuki A., Matsuhashi M. Determinations of the DNA sequence of the mreB gene and of the gene products of the mre region that function in formation of the rod shape of Escherichia coli cells. J Bacteriol. 1988 Oct;170(10):4619–4624. doi: 10.1128/jb.170.10.4619-4624.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Domann E., Chakraborty T. Nucleotide sequence of the listeriolysin gene from a Listeria monocytogenes serotype 1/2a strain. Nucleic Acids Res. 1989 Aug 11;17(15):6406–6406. doi: 10.1093/nar/17.15.6406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Domann E., Leimeister-Wächter M., Goebel W., Chakraborty T. Molecular cloning, sequencing, and identification of a metalloprotease gene from Listeria monocytogenes that is species specific and physically linked to the listeriolysin gene. Infect Immun. 1991 Jan;59(1):65–72. doi: 10.1128/iai.59.1.65-72.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Domann E., Wehland J., Rohde M., Pistor S., Hartl M., Goebel W., Leimeister-Wächter M., Wuenscher M., Chakraborty T. A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J. 1992 May;11(5):1981–1990. doi: 10.1002/j.1460-2075.1992.tb05252.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dons L., Rasmussen O. F., Olsen J. E. Cloning and characterization of a gene encoding flagellin of Listeria monocytogenes. Mol Microbiol. 1992 Oct;6(20):2919–2929. doi: 10.1111/j.1365-2958.1992.tb01751.x. [DOI] [PubMed] [Google Scholar]
- Dunn J. J., Studier F. W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol. 1983 Jun 5;166(4):477–535. doi: 10.1016/s0022-2836(83)80282-4. [DOI] [PubMed] [Google Scholar]
- Emond E., Fliss I., Pandian S. A ribosomal DNA fragment of Listeria monocytogenes and its use as a genus-specific probe in an aqueous-phase hybridization assay. Appl Environ Microbiol. 1993 Aug;59(8):2690–2697. doi: 10.1128/aem.59.8.2690-2697.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farber J. M., Peterkin P. I. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991 Sep;55(3):476–511. doi: 10.1128/mr.55.3.476-511.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haas A., Brehm K., Kreft J., Goebel W. Cloning, characterization, and expression in Escherichia coli of a gene encoding Listeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases. J Bacteriol. 1991 Aug;173(16):5159–5167. doi: 10.1128/jb.173.16.5159-5167.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill P. J., Swift S., Stewart G. S. PCR based gene engineering of the Vibrio harveyi lux operon and the Escherichia coli trp operon provides for biochemically functional native and fused gene products. Mol Gen Genet. 1991 Apr;226(1-2):41–48. doi: 10.1007/BF00273585. [DOI] [PubMed] [Google Scholar]
- Kreft J., Dumbsky M., Theiss S. The actin-polymerization protein from Listeria ivanovii is a large repeat protein which shows only limited amino acid sequence homology to ActA from Listeria monocytogenes. FEMS Microbiol Lett. 1995 Feb 15;126(2):113–121. doi: 10.1111/j.1574-6968.1995.tb07403.x. [DOI] [PubMed] [Google Scholar]
- Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lampidis R., Gross R., Sokolovic Z., Goebel W., Kreft J. The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp-Fnr family of transcription regulators. Mol Microbiol. 1994 Jul;13(1):141–151. doi: 10.1111/j.1365-2958.1994.tb00409.x. [DOI] [PubMed] [Google Scholar]
- Lebrun M., Audurier A., Cossart P. Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. J Bacteriol. 1994 May;176(10):3040–3048. doi: 10.1128/jb.176.10.3040-3048.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leimeister-Wächter M., Domann E., Chakraborty T. Detection of a gene encoding a phosphatidylinositol-specific phospholipase C that is co-ordinately expressed with listeriolysin in Listeria monocytogenes. Mol Microbiol. 1991 Feb;5(2):361–366. doi: 10.1111/j.1365-2958.1991.tb02117.x. [DOI] [PubMed] [Google Scholar]
- Loessner M. J., Busse M. Bacteriophage typing of Listeria species. Appl Environ Microbiol. 1990 Jun;56(6):1912–1918. doi: 10.1128/aem.56.6.1912-1918.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loessner M. J. Improved procedure for bacteriophage typing of Listeria strains and evaluation of new phages. Appl Environ Microbiol. 1991 Mar;57(3):882–884. doi: 10.1128/aem.57.3.882-884.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loessner M. J., Krause I. B., Henle T., Scherer S. Structural proteins and DNA characteristics of 14 Listeria typing bacteriophages. J Gen Virol. 1994 Apr;75(Pt 4):701–710. doi: 10.1099/0022-1317-75-4-701. [DOI] [PubMed] [Google Scholar]
- Loessner M. J., Schneider A., Scherer S. A new procedure for efficient recovery of DNA, RNA, and proteins from Listeria cells by rapid lysis with a recombinant bacteriophage endolysin. Appl Environ Microbiol. 1995 Mar;61(3):1150–1152. doi: 10.1128/aem.61.3.1150-1152.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loessner M. J., Wendlinger G., Scherer S. Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol Microbiol. 1995 Jun;16(6):1231–1241. doi: 10.1111/j.1365-2958.1995.tb02345.x. [DOI] [PubMed] [Google Scholar]
- Paces V., Vlcek C., Urbánek P. Nucleotide sequence of the late region of Bacillus subtilis phage PZA, a close relative of phi 29. Gene. 1986;44(1):107–114. doi: 10.1016/0378-1119(86)90048-x. [DOI] [PubMed] [Google Scholar]
- Saito I., Hatakeyama K., Kido T., Ohkubo H., Nakanishi S., Ueda K. Cloning of a full-length cDNA encoding bovine thymus poly(ADP-ribose) synthetase: evolutionarily conserved segments and their potential functions. Gene. 1990 Jun 15;90(2):249–254. doi: 10.1016/0378-1119(90)90187-v. [DOI] [PubMed] [Google Scholar]
- Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Völker T. A., Gafner J., Bickle T. A., Showe M. K. Gene 67, a new, essential bacteriophage T4 head gene codes for a prehead core component, PIP. I. Genetic mapping and DNA sequence. J Mol Biol. 1982 Nov 15;161(4):479–489. doi: 10.1016/0022-2836(82)90402-8. [DOI] [PubMed] [Google Scholar]
- Zink R., Loessner M. J. Classification of virulent and temperate bacteriophages of Listeria spp. on the basis of morphology and protein analysis. Appl Environ Microbiol. 1992 Jan;58(1):296–302. doi: 10.1128/aem.58.1.296-302.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Smit M. H., van Duin J. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7668–7672. doi: 10.1073/pnas.87.19.7668. [DOI] [PMC free article] [PubMed] [Google Scholar]