Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Nov;177(22):6638–6643. doi: 10.1128/jb.177.22.6638-6643.1995

Streptomyces serine protease (SAM-P20): recombinant production, characterization, and interaction with endogenous protease inhibitor.

S Taguchi 1, M Suzuki 1, S Kojima 1, K Miura 1, H Momose 1
PMCID: PMC177519  PMID: 7592444

Abstract

Previously, we isolated a candidate for an endogenous target enzyme(s) of the Streptomyces subtilisin inhibitor (SSI), termed SAM-P20, from a non-SSI-producing mutant strain (S. Taguchi, A. Odaka, Y. Watanabe, and H. Momose, Appl. Environ. Microbiol. 61:180-186, 1995). In this study, in order to investigate the detailed enzymatic properties of this protease, an overproduction system of recombinant SAM-P20 was established in Streptomyces coelicolor with the SSI gene promoter. The recombinant SAM-P20 was purified by salting out and by two successive ion-exchange chromatographies to give a homogeneous band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Partial peptide mapping and amino acid composition analysis revealed that the recombinant SAM-P20 was identical to natural SAM-P20. From the results for substrate specificity and inhibitor sensitivity, SAM-P20 could be categorized as a chymotrypsin-like protease with an arginine-cleavable activity, i.e., a serine protease with broad substrate specificity. For proteolytic activity, the optimal pH was 10.0 and the optimal temperature was shifted from 50 to 80 degrees C by the addition of 10 mM calcium ion. The strong stoichiometric inhibition of SAM-P20 activity by SSI dimer protein occurred in a subunit molar ratio of these two proteins of about 1, and an inhibitor constant of SSI toward SAM-P20 was estimated to be 8.0 x 10(-10) M. The complex formation of SAM-P20 and SSI was monitored by analytical gel filtration, and a complex composed of two molecules of SAM-P20 and one dimer molecule of SSI was detected, in addition to a complex of one molecule of SAM-P20 bound to one dimer molecule of SSI. The reactive site of SSI toward SAM-P20 was identified as Met-73-Val-74 by sequence analysis of the modified form of SSI, which was produced by the acidification of the complex of SSI and SAM-P20. This reactive site is the same that toward an exogenous target enzyme, subtilisin BPN'.

Full Text

The Full Text of this article is available as a PDF (265.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  2. Christensen U., Ishida S., Ishii S., Mitsui Y., Iitaka Y., McClarin J., Langridge R. Interactions of Streptomyces subtilisin inhibitor with Streptomyces griseus proteases A and B. Enzyme kinetic and computer simulation studies. J Biochem. 1985 Nov;98(5):1263–1274. doi: 10.1093/oxfordjournals.jbchem.a135393. [DOI] [PubMed] [Google Scholar]
  3. Gibb G. D., Strohl W. R. Physiological regulation of protease activity in Streptomyces peucetius. Can J Microbiol. 1988 Feb;34(2):187–190. doi: 10.1139/m88-034. [DOI] [PubMed] [Google Scholar]
  4. Ginther C. L. Sporulation and the production of serine protease and cephamycin C by Streptomyces lactamdurans. Antimicrob Agents Chemother. 1979 Apr;15(4):522–526. doi: 10.1128/aac.15.4.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Katz E., Thompson C. J., Hopwood D. A. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol. 1983 Sep;129(9):2703–2714. doi: 10.1099/00221287-129-9-2703. [DOI] [PubMed] [Google Scholar]
  6. Kojima S., Obata S., Kumagai I., Miura K. Alteration of the specificity of the Streptomyces subtilisin inhibitor by gene engineering. Biotechnology (N Y) 1990 May;8(5):449–452. doi: 10.1038/nbt0590-449. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. MATSUBARA H., KASPER C. B., BROWN D. M., SMITH E. L. SUBTILISIN BPN'. I. PHYSICAL PROPERTIES AND AMINO ACID COMPOSITION. J Biol Chem. 1965 Mar;240:1125–1130. [PubMed] [Google Scholar]
  9. Mitsui Y., Satow Y., Watanabe Y., Hirono S., Iitaka Y. Crystal structures of Streptomyces subtilisin inhibitor and its complex with subtilisin BPN'. Nature. 1979 Feb 8;277(5696):447–452. doi: 10.1038/277447a0. [DOI] [PubMed] [Google Scholar]
  10. Robertus J. D., Alden R. A., Birktoft J. J., Kraut J., Powers J. C., Wilcox P. E. An x-ray crystallographic study of the binding of peptide chloromethyl ketone inhibitors to subtilisin BPN'. Biochemistry. 1972 Jun 20;11(13):2439–2449. doi: 10.1021/bi00763a009. [DOI] [PubMed] [Google Scholar]
  11. Taguchi S., Kikuchi H., Kojima S., Kumagai I., Nakase T., Miura K., Momose H. High frequency of SSI-like protease inhibitors among Streptomyces. Biosci Biotechnol Biochem. 1993 Mar;57(3):522–524. doi: 10.1271/bbb.57.522. [DOI] [PubMed] [Google Scholar]
  12. Taguchi S., Kikuchi H., Suzuki M., Kojima S., Terabe M., Miura K., Nakase T., Momose H. Streptomyces subtilisin inhibitor-like proteins are distributed widely in streptomycetes. Appl Environ Microbiol. 1993 Dec;59(12):4338–4341. doi: 10.1128/aem.59.12.4338-4341.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Taguchi S., Kojima S., Kumagai I., Ogawara H., Miura K., Momose H. Isolation and partial characterization of SSI-like protease inhibitors from Streptomyces. FEMS Microbiol Lett. 1992 Dec 1;78(2-3):293–297. doi: 10.1016/0378-1097(92)90043-n. [DOI] [PubMed] [Google Scholar]
  14. Taguchi S., Kojima S., Terabe M., Miura K., Momose H. Comparative studies on the primary structures and inhibitory properties of subtilisin-trypsin inhibitors from Streptomyces. Eur J Biochem. 1994 Mar 15;220(3):911–918. doi: 10.1111/j.1432-1033.1994.tb18694.x. [DOI] [PubMed] [Google Scholar]
  15. Taguchi S., Kumagai I., Miura K. Comparison of secretory expression in Escherichia coli and Streptomyces of Streptomyces subtilisin inhibitor (SSI) gene. Biochim Biophys Acta. 1990 Jul 30;1049(3):278–285. doi: 10.1016/0167-4781(90)90098-m. [DOI] [PubMed] [Google Scholar]
  16. Taguchi S., Nakagawa K., Maeno M., Momose H. In vivo monitoring system for structure-function relationship analysis of the antibacterial peptide apidaecin. Appl Environ Microbiol. 1994 Oct;60(10):3566–3572. doi: 10.1128/aem.60.10.3566-3572.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Taguchi S., Nishiyama K., Kumagai I., Miura K. Analysis of transcriptional control regions in the Streptomyces subtilisin-inhibitor-encoding gene. Gene. 1989 Dec 14;84(2):279–286. doi: 10.1016/0378-1119(89)90501-5. [DOI] [PubMed] [Google Scholar]
  18. Taguchi S., Odaka A., Watanabe Y., Momose H. Molecular characterization of a gene encoding extracellular serine protease isolated from a subtilisin inhibitor-deficient mutant of Streptomyces albogriseolus S-3253. Appl Environ Microbiol. 1995 Jan;61(1):180–186. doi: 10.1128/aem.61.1.180-186.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tange T., Taguchi S., Kojima S., Miura K., Momose H. Improvement of a useful enzyme (subtilisin BPN') by an experimental evolution system. Appl Microbiol Biotechnol. 1994 Apr;41(2):239–244. doi: 10.1007/BF00186966. [DOI] [PubMed] [Google Scholar]
  20. Terabe M., Kojima S., Taguchi S., Momose H., Miura K. Primary structure and inhibitory properties of a subtilisin-chymotrypsin inhibitor from Streptomyces virginiae. Eur J Biochem. 1994 Dec 1;226(2):627–632. doi: 10.1111/j.1432-1033.1994.tb20089.x. [DOI] [PubMed] [Google Scholar]
  21. Umezawa H. Low-molecular-weight enzyme inhibitors of microbial origin. Annu Rev Microbiol. 1982;36:75–99. doi: 10.1146/annurev.mi.36.100182.000451. [DOI] [PubMed] [Google Scholar]
  22. Wells J. A., Estell D. A. Subtilisin--an enzyme designed to be engineered. Trends Biochem Sci. 1988 Aug;13(8):291–297. doi: 10.1016/0968-0004(88)90121-1. [DOI] [PubMed] [Google Scholar]
  23. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES