Abstract
Previously, we isolated a candidate for an endogenous target enzyme(s) of the Streptomyces subtilisin inhibitor (SSI), termed SAM-P20, from a non-SSI-producing mutant strain (S. Taguchi, A. Odaka, Y. Watanabe, and H. Momose, Appl. Environ. Microbiol. 61:180-186, 1995). In this study, in order to investigate the detailed enzymatic properties of this protease, an overproduction system of recombinant SAM-P20 was established in Streptomyces coelicolor with the SSI gene promoter. The recombinant SAM-P20 was purified by salting out and by two successive ion-exchange chromatographies to give a homogeneous band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Partial peptide mapping and amino acid composition analysis revealed that the recombinant SAM-P20 was identical to natural SAM-P20. From the results for substrate specificity and inhibitor sensitivity, SAM-P20 could be categorized as a chymotrypsin-like protease with an arginine-cleavable activity, i.e., a serine protease with broad substrate specificity. For proteolytic activity, the optimal pH was 10.0 and the optimal temperature was shifted from 50 to 80 degrees C by the addition of 10 mM calcium ion. The strong stoichiometric inhibition of SAM-P20 activity by SSI dimer protein occurred in a subunit molar ratio of these two proteins of about 1, and an inhibitor constant of SSI toward SAM-P20 was estimated to be 8.0 x 10(-10) M. The complex formation of SAM-P20 and SSI was monitored by analytical gel filtration, and a complex composed of two molecules of SAM-P20 and one dimer molecule of SSI was detected, in addition to a complex of one molecule of SAM-P20 bound to one dimer molecule of SSI. The reactive site of SSI toward SAM-P20 was identified as Met-73-Val-74 by sequence analysis of the modified form of SSI, which was produced by the acidification of the complex of SSI and SAM-P20. This reactive site is the same that toward an exogenous target enzyme, subtilisin BPN'.
Full Text
The Full Text of this article is available as a PDF (265.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
- Christensen U., Ishida S., Ishii S., Mitsui Y., Iitaka Y., McClarin J., Langridge R. Interactions of Streptomyces subtilisin inhibitor with Streptomyces griseus proteases A and B. Enzyme kinetic and computer simulation studies. J Biochem. 1985 Nov;98(5):1263–1274. doi: 10.1093/oxfordjournals.jbchem.a135393. [DOI] [PubMed] [Google Scholar]
- Gibb G. D., Strohl W. R. Physiological regulation of protease activity in Streptomyces peucetius. Can J Microbiol. 1988 Feb;34(2):187–190. doi: 10.1139/m88-034. [DOI] [PubMed] [Google Scholar]
- Ginther C. L. Sporulation and the production of serine protease and cephamycin C by Streptomyces lactamdurans. Antimicrob Agents Chemother. 1979 Apr;15(4):522–526. doi: 10.1128/aac.15.4.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz E., Thompson C. J., Hopwood D. A. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol. 1983 Sep;129(9):2703–2714. doi: 10.1099/00221287-129-9-2703. [DOI] [PubMed] [Google Scholar]
- Kojima S., Obata S., Kumagai I., Miura K. Alteration of the specificity of the Streptomyces subtilisin inhibitor by gene engineering. Biotechnology (N Y) 1990 May;8(5):449–452. doi: 10.1038/nbt0590-449. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MATSUBARA H., KASPER C. B., BROWN D. M., SMITH E. L. SUBTILISIN BPN'. I. PHYSICAL PROPERTIES AND AMINO ACID COMPOSITION. J Biol Chem. 1965 Mar;240:1125–1130. [PubMed] [Google Scholar]
- Mitsui Y., Satow Y., Watanabe Y., Hirono S., Iitaka Y. Crystal structures of Streptomyces subtilisin inhibitor and its complex with subtilisin BPN'. Nature. 1979 Feb 8;277(5696):447–452. doi: 10.1038/277447a0. [DOI] [PubMed] [Google Scholar]
- Robertus J. D., Alden R. A., Birktoft J. J., Kraut J., Powers J. C., Wilcox P. E. An x-ray crystallographic study of the binding of peptide chloromethyl ketone inhibitors to subtilisin BPN'. Biochemistry. 1972 Jun 20;11(13):2439–2449. doi: 10.1021/bi00763a009. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Kikuchi H., Kojima S., Kumagai I., Nakase T., Miura K., Momose H. High frequency of SSI-like protease inhibitors among Streptomyces. Biosci Biotechnol Biochem. 1993 Mar;57(3):522–524. doi: 10.1271/bbb.57.522. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Kikuchi H., Suzuki M., Kojima S., Terabe M., Miura K., Nakase T., Momose H. Streptomyces subtilisin inhibitor-like proteins are distributed widely in streptomycetes. Appl Environ Microbiol. 1993 Dec;59(12):4338–4341. doi: 10.1128/aem.59.12.4338-4341.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taguchi S., Kojima S., Kumagai I., Ogawara H., Miura K., Momose H. Isolation and partial characterization of SSI-like protease inhibitors from Streptomyces. FEMS Microbiol Lett. 1992 Dec 1;78(2-3):293–297. doi: 10.1016/0378-1097(92)90043-n. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Kojima S., Terabe M., Miura K., Momose H. Comparative studies on the primary structures and inhibitory properties of subtilisin-trypsin inhibitors from Streptomyces. Eur J Biochem. 1994 Mar 15;220(3):911–918. doi: 10.1111/j.1432-1033.1994.tb18694.x. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Kumagai I., Miura K. Comparison of secretory expression in Escherichia coli and Streptomyces of Streptomyces subtilisin inhibitor (SSI) gene. Biochim Biophys Acta. 1990 Jul 30;1049(3):278–285. doi: 10.1016/0167-4781(90)90098-m. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Nakagawa K., Maeno M., Momose H. In vivo monitoring system for structure-function relationship analysis of the antibacterial peptide apidaecin. Appl Environ Microbiol. 1994 Oct;60(10):3566–3572. doi: 10.1128/aem.60.10.3566-3572.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taguchi S., Nishiyama K., Kumagai I., Miura K. Analysis of transcriptional control regions in the Streptomyces subtilisin-inhibitor-encoding gene. Gene. 1989 Dec 14;84(2):279–286. doi: 10.1016/0378-1119(89)90501-5. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Odaka A., Watanabe Y., Momose H. Molecular characterization of a gene encoding extracellular serine protease isolated from a subtilisin inhibitor-deficient mutant of Streptomyces albogriseolus S-3253. Appl Environ Microbiol. 1995 Jan;61(1):180–186. doi: 10.1128/aem.61.1.180-186.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tange T., Taguchi S., Kojima S., Miura K., Momose H. Improvement of a useful enzyme (subtilisin BPN') by an experimental evolution system. Appl Microbiol Biotechnol. 1994 Apr;41(2):239–244. doi: 10.1007/BF00186966. [DOI] [PubMed] [Google Scholar]
- Terabe M., Kojima S., Taguchi S., Momose H., Miura K. Primary structure and inhibitory properties of a subtilisin-chymotrypsin inhibitor from Streptomyces virginiae. Eur J Biochem. 1994 Dec 1;226(2):627–632. doi: 10.1111/j.1432-1033.1994.tb20089.x. [DOI] [PubMed] [Google Scholar]
- Umezawa H. Low-molecular-weight enzyme inhibitors of microbial origin. Annu Rev Microbiol. 1982;36:75–99. doi: 10.1146/annurev.mi.36.100182.000451. [DOI] [PubMed] [Google Scholar]
- Wells J. A., Estell D. A. Subtilisin--an enzyme designed to be engineered. Trends Biochem Sci. 1988 Aug;13(8):291–297. doi: 10.1016/0968-0004(88)90121-1. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]