Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Dec;177(23):6711–6717. doi: 10.1128/jb.177.23.6711-6717.1995

Isolation of NAD cycle mutants defective in nicotinamide mononucleotide deamidase in Salmonella typhimurium.

W Cheng 1, J Roth 1
PMCID: PMC177533  PMID: 7592458

Abstract

The NAD or pyridine nucleotide cycle is the sequence of reactions involved in the breakdown of NAD to nicotinamide mononucleotide (NMN) and regeneration of NAD. This cycle is fivefold more active during aerobic growth of Salmonella typhimurium and under this condition breaks down half of the NAD pool every 90 min. DNA ligase is known to convert NAD to NMN but is only a minor contributor to the NAD cycle during aerobic growth. The dominant aerobic route of NMN formation is otherwise uncharacterized. Accumulated NMN generated by either of these routes is potentially dangerous in that it can inhibit the essential enzyme DNA ligase. The reactions which recycle NMN to NAD may serve to minimize the inhibition of ligase and other enzymes by accumulated NMN. The predominant recycling reaction in S. typhimurium appears to be NMN deamidase, which converts NMN directly to the biosynthetic intermediate nicotinic acid mononucleotide. Mutants defective in this recycling step were isolated and characterized. By starting with a ligase-deficient (lig mutant) parent strain that requires deamidase to assimilate exogenous NMN, two classes of mutants that are unable to grow on minimal NMN media were isolated. One class (pncC) maps at 83.7 min and shows only 2% of the wild-type levels of NMN deamidase. Under aerobic conditions, a lig+ allele allows a pncC mutant to grow on NMN and restores some deamidase activity. This growth ability and enzyme activity are not found in lig+ strains grown without oxygen. This suggests that the existence of a second NMN deamidase (pncL) dependent on ligase and stimulated during aerobic growth. The second class of mutants (pncD) gains a requirement for isoleucine plus valine with growth in the presence of exogenous NMN. We propose that pncD mutations reduce the activity of an ilv biosynthetic enzyme that is naturally sensitive to inhibition by NMN.

Full Text

The Full Text of this article is available as a PDF (274.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benson N. R., Goldman B. S. Rapid mapping in Salmonella typhimurium with Mud-P22 prophages. J Bacteriol. 1992 Mar;174(5):1673–1681. doi: 10.1128/jb.174.5.1673-1681.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Casadaban M. J., Cohen S. N. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. doi: 10.1073/pnas.76.9.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Castilho B. A., Olfson P., Casadaban M. J. Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol. 1984 May;158(2):488–495. doi: 10.1128/jb.158.2.488-495.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chan R. K., Botstein D., Watanabe T., Ogata Y. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high-frequency-transducing lysate. Virology. 1972 Dec;50(3):883–898. doi: 10.1016/0042-6822(72)90442-4. [DOI] [PubMed] [Google Scholar]
  5. Chandler J. L., Gholson R. K. De novo biosynthesis of nicotinamide adenine dinucleotide in Escherichia coli: excretion of quinolinic acid by mutants lacking quinolinate phosphoribosyl transferase. J Bacteriol. 1972 Jul;111(1):98–102. doi: 10.1128/jb.111.1.98-102.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng W., Roth J. R. Evidence for two NAD kinases in Salmonella typhimurium. J Bacteriol. 1994 Jul;176(14):4260–4268. doi: 10.1128/jb.176.14.4260-4268.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elliott T., Roth J. R. Characterization of Tn10d-Cam: a transposition-defective Tn10 specifying chloramphenicol resistance. Mol Gen Genet. 1988 Aug;213(2-3):332–338. doi: 10.1007/BF00339599. [DOI] [PubMed] [Google Scholar]
  8. Foster J. W., Baskowsky-Foster A. M. Pyridine nucleotide cycle of Salmonella typhimurium: in vivo recycling of nicotinamide adenine dinucleotide. J Bacteriol. 1980 Jun;142(3):1032–1035. doi: 10.1128/jb.142.3.1032-1035.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foster J. W., Kinney D. M., Moat A. G. Pyridine nucleotide cycle of Salmonella typhimurium: regulation of nicotinic acid phosphoribosyltransferase and nicotinamide deamidase. J Bacteriol. 1979 Jun;138(3):957–961. doi: 10.1128/jb.138.3.957-961.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foster J. W., Moat A. G. Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol Rev. 1980 Mar;44(1):83–105. doi: 10.1128/mr.44.1.83-105.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Friedmann H. C., Garstki C. The pyridine nucleotide cycle: presence of a nicotinamide mononucleotide-specific amidohydrolase in Propionibacterium shermanii. Biochem Biophys Res Commun. 1973 Jan 4;50(1):54–58. doi: 10.1016/0006-291x(73)91062-0. [DOI] [PubMed] [Google Scholar]
  12. Gholson R. K. The pyridine nucleotide cycle. Nature. 1966 Nov 26;212(5065):933–935. doi: 10.1038/212933a0. [DOI] [PubMed] [Google Scholar]
  13. Hillyard D., Rechsteiner M., Manlapaz-Ramos P., Imperial J. S., Cruz L. J., Olivera B. M. The pyridine nucleotide cycle. Studies in Escherichia coli and the human cell line D98/AH2. J Biol Chem. 1981 Aug 25;256(16):8491–8497. [PubMed] [Google Scholar]
  14. Hong J. S., Ames B. N. Localized mutagenesis of any specific small region of the bacterial chromosome. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3158–3162. doi: 10.1073/pnas.68.12.3158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hughes K. T., Roth J. R. Transitory cis complementation: a method for providing transposition functions to defective transposons. Genetics. 1988 May;119(1):9–12. doi: 10.1093/genetics/119.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keyes T. W., Olivera B. M., Stewart D. J., Hanly E. W. Pyridine nucleotide metabolism in imaginal discs of Drosophila melanogaster. Biochem Genet. 1976 Apr;14(3-4):197–207. doi: 10.1007/BF00484760. [DOI] [PubMed] [Google Scholar]
  17. Kinney D. M., Foster J. W., Moat A. G. Pyridine nucleotide cycle of Salmonella typhimurium: in vitro demonstration of nicotinamide mononucleotide deamidase and characterization of pnuA mutants defective in nicotinamide mononucleotide transport. J Bacteriol. 1979 Nov;140(2):607–611. doi: 10.1128/jb.140.2.607-611.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Liu G., Foster J., Manlapaz-Ramos P., Olivera B. M. Nucleoside salvage pathway for NAD biosynthesis in Salmonella typhimurium. J Bacteriol. 1982 Dec;152(3):1111–1116. doi: 10.1128/jb.152.3.1111-1116.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Manlapaz-Fernandez P., Olivera B. M. Pyridine nucleotide metabolism in Escherichia coli. IV. Turnover. J Biol Chem. 1973 Jul 25;248(14):5150–5155. [PubMed] [Google Scholar]
  21. Manser T., Olivera B. M., Haugli F. B. NAD turnover in microplasmodia of physarum polycephalum. J Cell Physiol. 1980 Mar;102(3):379–384. doi: 10.1002/jcp.1041020312. [DOI] [PubMed] [Google Scholar]
  22. McLaren J., Ngo D. T., Olivera B. M. Pyridine nucleotide metabolism in Escherichia coli. 3. Biosynthesis from alternative precursors in vivo. J Biol Chem. 1973 Jul 25;248(14):5144–5149. [PubMed] [Google Scholar]
  23. Olivera B. M., Lundquist R. DNA synthesis in Escherichia coli in the presence of cyanide. J Mol Biol. 1971 Apr 28;57(2):263–277. doi: 10.1016/0022-2836(71)90345-7. [DOI] [PubMed] [Google Scholar]
  24. PREISS J., HANDLER P. Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J Biol Chem. 1958 Aug;233(2):493–500. [PubMed] [Google Scholar]
  25. Park U. E., Olivera B. M., Hughes K. T., Roth J. R., Hillyard D. R. DNA ligase and the pyridine nucleotide cycle in Salmonella typhimurium. J Bacteriol. 1989 Apr;171(4):2173–2180. doi: 10.1128/jb.171.4.2173-2180.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rechsteiner M., Hillyard D., Olivera B. M. Magnitude and significance of NAD turnover in human cell line D98/AH2. Nature. 1976 Feb 26;259(5545):695–696. doi: 10.1038/259695a0. [DOI] [PubMed] [Google Scholar]
  27. Schmieger H. A method for detection of phage mutants with altered transducing ability. Mol Gen Genet. 1971;110(4):378–381. doi: 10.1007/BF00438281. [DOI] [PubMed] [Google Scholar]
  28. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  29. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. doi: 10.1016/0378-1119(84)90012-x. [DOI] [PubMed] [Google Scholar]
  30. Zhu N., Olivera B. M., Roth J. R. Activity of the nicotinamide mononucleotide transport system is regulated in Salmonella typhimurium. J Bacteriol. 1991 Feb;173(3):1311–1320. doi: 10.1128/jb.173.3.1311-1320.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zhu N., Olivera B. M., Roth J. R. Genetic characterization of the pnuC gene, which encodes a component of the nicotinamide mononucleotide transport system in Salmonella typhimurium. J Bacteriol. 1989 Aug;171(8):4402–4409. doi: 10.1128/jb.171.8.4402-4409.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES