Abstract
Light harvesting in cyanobacteria is performed by the biliproteins, which are organized into membrane-associated complexes called phycobilisomes. Most phycobilisomes have a core substructure that is composed of the allophycocyanin biliproteins and is energetically linked to chlorophyll in the photosynthetic membrane. Rod substructures are attached to the phycobilisome cores and contain phycocyanin and sometimes phycoerythrin. The different biliproteins have discrete absorbance and fluorescence maxima that overlap in an energy transfer pathway that terminates with chlorophyll. A phycocyanin-minus mutant in the cyanobacterium Synechocystis sp. strain 6803 (strain 4R) has been shown to have a nonsense mutation in the cpcB gene encoding the phycocyanin beta subunit. We have expressed a foreign phycocyanin operon from Synechocystis sp. strain 6701 in the 4R strain and complemented the phycocyanin-minus phenotype. Complementation occurs because the foreign phycocyanin alpha and beta subunits assemble with endogenous phycobilisome components. The phycocyanin alpha subunit that is normally absent in the 4R strain can be rescued by heterologous assembly as well. Expression of the Synechocystis sp. strain 6701 cpcBA operon in the wild-type Synechocystis sp. strain 6803 was also examined and showed that the foreign phycocyanin can compete with the endogenous protein for assembly into phycobilisomes.
Full Text
The Full Text of this article is available as a PDF (313.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson L. K., Grossman A. R. Genes for phycocyanin subunits in Synechocystis sp. strain PCC 6701 and assembly mutant UV16. J Bacteriol. 1990 Mar;172(3):1289–1296. doi: 10.1128/jb.172.3.1289-1296.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson L. K., Grossman A. R. Structure and light-regulated expression of phycoerythrin genes in wild-type and phycobilisome assembly mutants of Synechocystis sp. strain PCC 6701. J Bacteriol. 1990 Mar;172(3):1297–1305. doi: 10.1128/jb.172.3.1297-1305.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson L. K., Rayner M. C., Eiserling F. A. Mutations that affect structure and assembly of light-harvesting proteins in the cyanobacterium Synechocystis sp. strain 6701. J Bacteriol. 1987 Jan;169(1):102–109. doi: 10.1128/jb.169.1.102-109.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Apt K. E., Collier J. L., Grossman A. R. Evolution of the phycobiliproteins. J Mol Biol. 1995 Apr 21;248(1):79–96. doi: 10.1006/jmbi.1995.0203. [DOI] [PubMed] [Google Scholar]
- Bryant D. A. The photoregulated expression of multiple phycocyanin species. A general mechanism for the control of phycocyanin synthesis in chromatically adapting cyanobacteria. Eur J Biochem. 1981 Oct;119(2):425–429. doi: 10.1111/j.1432-1033.1981.tb05625.x. [DOI] [PubMed] [Google Scholar]
- Dzelzkalns V. A., Bogorad L. Stable transformation of the cyanobacterium Synechocystis sp. PCC 6803 induced by UV irradiation. J Bacteriol. 1986 Mar;165(3):964–971. doi: 10.1128/jb.165.3.964-971.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fairchild C. D., Glazer A. N. Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin alpha subunit phycocyanobilin lyase. J Biol Chem. 1994 Mar 25;269(12):8686–8694. [PubMed] [Google Scholar]
- Gingrich J. C., Blaha L. K., Glazer A. N. Rod substructure in cyanobacterial phycobilisomes: analysis of Synechocystis 6701 mutants low in phycoerythrin. J Cell Biol. 1982 Feb;92(2):261–268. doi: 10.1083/jcb.92.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glazer A. N., Fang S. Formation of hybrid proteins form the and subunits of phycocyanins of unicellular and filamentous blue-green algae. J Biol Chem. 1973 Jan 25;248(2):663–671. [PubMed] [Google Scholar]
- Glazer A. N., Lundell D. J., Yamanaka G., Williams R. C. The structure of a "simple" phycobilisome. Ann Microbiol (Paris) 1983 Jul-Aug;134B(1):159–180. doi: 10.1016/s0769-2609(83)80103-3. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Plank T., Toole C., Anderson L. K. Subunit interactions and protein stability in the cyanobacterial light-harvesting proteins. J Bacteriol. 1995 Dec;177(23):6798–6803. doi: 10.1128/jb.177.23.6798-6803.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman F., Stewart J. W., Tsunasawa S. Methionine or not methionine at the beginning of a protein. Bioessays. 1985 Jul;3(1):27–31. doi: 10.1002/bies.950030108. [DOI] [PubMed] [Google Scholar]
- Su X., Fraenkel P. G., Bogorad L. Excitation energy transfer from phycocyanin to chlorophyll in an apcA-defective mutant of Synechocystis sp. PCC 6803. J Biol Chem. 1992 Nov 15;267(32):22944–22950. [PubMed] [Google Scholar]
- Swanson R. V., Glazer A. N. Separation of phycobiliprotein subunits by reverse-phase high-pressure liquid chromatography. Anal Biochem. 1990 Aug 1;188(2):295–299. doi: 10.1016/0003-2697(90)90609-d. [DOI] [PubMed] [Google Scholar]
- de Lorimier R., Guglielmi G., Bryant D. A., Stevens S. E., Jr Functional expression of plastid allophycocyanin genes in a cyanobacterium. J Bacteriol. 1987 May;169(5):1830–1835. doi: 10.1128/jb.169.5.1830-1835.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]