Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Dec;177(23):6820–6824. doi: 10.1128/jb.177.23.6820-6824.1995

Structure-function relationship of bacterial prolipoprotein diacylglyceryl transferase: functionally significant conserved regions.

H Y Qi 1, K Sankaran 1, K Gan 1, H C Wu 1
PMCID: PMC177548  PMID: 7592473

Abstract

The structure-function relationship of bacterial prolipoprotein diacylgyceryl transferase (LGT) Has been investigated by a comparison of the primary structures of this enzyme in phylogenetically distant bacterial species, analysis of the sequences of mutant enzymes, and specific chemical modification of the Escherichia coli enzyme. A clone containing the gene for LGT, lgt, of the gram-positive species Staphylococcus aureus was isolated by complementation of the temperature-sensitive lgt mutant of E. coli (strain SK634) defective in LGT activity. In vivo and in vitro assays for prolipoprotein diacylglyceryl modification activity indicated that the complementing clone restored the prolipoprotein modification activity in the mutant strain. Sequence determination of the insert DNA revealed an open reading frame of 837 bp encoding a protein of 279 amino acids with a calculated molecular mass of 31.6 kDa. S. aureus LGT showed 24% identity and 47% similarity with E. coli, Salmonella typhimurium, and Haemophilus influenzae LGT.S. aureus LGT, while 12 amino acids shorter than the E. coli enzyme, had a hydropathic profile and a predicted pI (10.4) similar to those of the E. coli enzyme. Multiple sequence alignment among E. coli, S. typhimurium, H. influenzae, and S. aureus LGT proteins revealed regions of highly conserved amino acid sequences throughout the molecule. Three independent lgt mutant alleles from E. coli SK634, SK635, and SK636 and one lgt allele from S. typhimurium SE5221, all defective in LGT activity at the nonpermissive temperature, were cloned by PCR and sequenced. The mutant alleles were found to contain a single base alteration resulting in the substitution of a conserved amino acid. The longest set of identical amino acids without any gap was H-103-GGLIG-108 in LGT from these four microorganisms. In E. coli lgt mutant SK634, Gly-104 in this region was mutated to Ser, and the mutant organism was temperature sensitive in growth and exhibited low LGT activity in vitro. Diethylpyrocarbonate inactivated the E. coli LGT with a second-order rate constant of 18.6 M-1S-1, and the inactivation of LGT activity was reversed by hydroxylamine at pH 7. The inactivation kinetics were consistent with the modification of a single residue, His or Tyr, essential for LGT activity.

Full Text

The Full Text of this article is available as a PDF (319.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  3. Dev I. K., Ray P. H. Rapid assay and purification of a unique signal peptidase that processes the prolipoprotein from Escherichia coli B. J Biol Chem. 1984 Sep 10;259(17):11114–11120. [PubMed] [Google Scholar]
  4. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  5. Foster P. A., Fulcher C. A., Houghten R. A., Zimmerman T. S. Synthetic factor VIII peptides with amino acid sequences contained within the C2 domain of factor VIII inhibit factor VIII binding to phosphatidylserine. Blood. 1990 May 15;75(10):1999–2004. [PubMed] [Google Scholar]
  6. Gan K., Gupta S. D., Sankaran K., Schmid M. B., Wu H. C. Isolation and characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in prolipoprotein modification. J Biol Chem. 1993 Aug 5;268(22):16544–16550. [PubMed] [Google Scholar]
  7. Gan K., Sankaran K., Williams M. G., Aldea M., Rudd K. E., Kushner S. R., Wu H. C. The umpA gene of Escherichia coli encodes phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (lgt) and regulates thymidylate synthase levels through translational coupling. J Bacteriol. 1995 Apr;177(7):1879–1882. doi: 10.1128/jb.177.7.1879-1882.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gupta S. D., Gan K., Schmid M. B., Wu H. C. Characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in apolipoprotein N-acyltransferase. J Biol Chem. 1993 Aug 5;268(22):16551–16556. [PubMed] [Google Scholar]
  9. Hantke K., Braun V. Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur J Biochem. 1973 Apr;34(2):284–296. doi: 10.1111/j.1432-1033.1973.tb02757.x. [DOI] [PubMed] [Google Scholar]
  10. Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
  11. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sankaran K., Wu H. C. Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem. 1994 Aug 5;269(31):19701–19706. [PubMed] [Google Scholar]
  13. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  14. Shibuya I., Hiraoka S. Cardiolipin synthase from Escherichia coli. Methods Enzymol. 1992;209:321–330. doi: 10.1016/0076-6879(92)09040-a. [DOI] [PubMed] [Google Scholar]
  15. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tokunaga M., Tokunaga H., Wu H. C. Post-translational modification and processing of Escherichia coli prolipoprotein in vitro. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2255–2259. doi: 10.1073/pnas.79.7.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tuddenham E. G., Cooper D. N., Gitschier J., Higuchi M., Hoyer L. W., Yoshioka A., Peake I. R., Schwaab R., Olek K., Kazazian H. H. Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene. Nucleic Acids Res. 1991 Sep 25;19(18):4821–4833. doi: 10.1093/nar/19.18.4821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wada K., Wada Y., Doi H., Ishibashi F., Gojobori T., Ikemura T. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):1981–1986. doi: 10.1093/nar/19.suppl.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Williams M. G., Fortson M., Dykstra C. C., Jensen P., Kushner S. R. Identification and genetic mapping of the structural gene for an essential Escherichia coli membrane protein. J Bacteriol. 1989 Jan;171(1):565–568. doi: 10.1128/jb.171.1.565-568.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yamagata H., Ippolito C., Inukai M., Inouye M. Temperature-sensitive processing of outer membrane lipoprotein in an Escherichia coli mutant. J Bacteriol. 1982 Dec;152(3):1163–1168. doi: 10.1128/jb.152.3.1163-1168.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES