Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Dec;177(23):6844–6853. doi: 10.1128/jb.177.23.6844-6853.1995

Recombination-dependent DNA replication stimulated by double-strand breaks in bacteriophage T4.

K N Kreuzer 1, M Saunders 1, L J Weislo 1, H W Kreuzer 1
PMCID: PMC177552  PMID: 7592477

Abstract

We analyzed the mechanism of recombination-dependent DNA replication in bacteriophage T4-infected Escherichia coli using plasmids that have sequence homology to the infecting phage chromosome. Consistent with prior studies, a pBR322 plasmid, initially resident in the infected host cell, does not replicate following infection by T4. However, the resident plasmid can be induced to replicate when an integrated copy of pBR322 vector is present in the phage chromosome. As expected for recombination-dependent DNA replication, the induced replication of pBR322 required the phage-encoded UvsY protein. Therefore, recombination-dependent plasmid replication requires homology between the plasmid and phage genomes but does not depend on the presence of any particular T4 DNA sequence on the test plasmid. We next asked whether T4 recombination-dependent DNA replication can be triggered by a double-strand break (dsb). For these experiments, we generated a novel phage strain that cleaves its own genome within the nonessential frd gene by means of the I-TevI endonuclease (encoded within the intron of the wild-type td gene). The dsb within the phage chromosome substantially increased the replication of plasmids that carry T4 inserts homologous to the region of the dsb (the plasmids are not themselves cleaved by the endonuclease). The dsb stimulated replication when the plasmid was homologous to either or both sides of the break but did not stimulate the replication of plasmids with homology to distant regions of the phage chromosome. As expected for recombination-dependent replication, plasmid replication triggered by dsbs was dependent on T4-encoded recombination proteins. These results confirm two important predictions of the model for T4-encoded recombination-dependent DNA replication proposed by Gisela Mosig (p. 120-130, in C. K. Mathews, E. M. Kutter, G. Mosig, and P. B. Berget (ed.), Bacteriophage T4, 1983). In addition, replication stimulated by dsbs provides a site-specific version of the process, which should be very useful for mechanistic studies.

Full Text

The Full Text of this article is available as a PDF (434.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albright L. M., Geiduschek E. P. Site-specific cleavage of bacteriophage T4 DNA associated with the absence of gene 46 product function. J Virol. 1983 Jul;47(1):77–88. doi: 10.1128/jvi.47.1.77-88.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asai T., Bates D. B., Kogoma T. DNA replication triggered by double-stranded breaks in E. coli: dependence on homologous recombination functions. Cell. 1994 Sep 23;78(6):1051–1061. doi: 10.1016/0092-8674(94)90279-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asai T., Kogoma T. D-loops and R-loops: alternative mechanisms for the initiation of chromosome replication in Escherichia coli. J Bacteriol. 1994 Apr;176(7):1807–1812. doi: 10.1128/jb.176.7.1807-1812.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Asai T., Sommer S., Bailone A., Kogoma T. Homologous recombination-dependent initiation of DNA replication from DNA damage-inducible origins in Escherichia coli. EMBO J. 1993 Aug;12(8):3287–3295. doi: 10.1002/j.1460-2075.1993.tb05998.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barry J., Alberts B. Purification and characterization of bacteriophage T4 gene 59 protein. A DNA helicase assembly protein involved in DNA replication. J Biol Chem. 1994 Dec 30;269(52):33049–33062. [PubMed] [Google Scholar]
  6. Belfort M. Phage T4 introns: self-splicing and mobility. Annu Rev Genet. 1990;24:363–385. doi: 10.1146/annurev.ge.24.120190.002051. [DOI] [PubMed] [Google Scholar]
  7. Benbow R. M., Zuccarelli A. J., Sinsheimer R. L. A role for single-strand breaks in bacteriophage phi-X174 genetic recombination. J Mol Biol. 1974 Sep 25;88(3):629–651. doi: 10.1016/0022-2836(74)90414-8. [DOI] [PubMed] [Google Scholar]
  8. Benson K. H., Kreuzer K. N. Plasmid models for bacteriophage T4 DNA replication: requirements for fork proteins. J Virol. 1992 Dec;66(12):6960–6968. doi: 10.1128/jvi.66.12.6960-6968.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Broker T. R. An electron microscopic analysis of pathways for bacteriophage T4 DNA recombination. J Mol Biol. 1973 Nov 25;81(1):1–16. doi: 10.1016/0022-2836(73)90243-x. [DOI] [PubMed] [Google Scholar]
  10. Clyman J., Belfort M. Trans and cis requirements for intron mobility in a prokaryotic system. Genes Dev. 1992 Jul;6(7):1269–1279. doi: 10.1101/gad.6.7.1269. [DOI] [PubMed] [Google Scholar]
  11. Derr L. K., Kreuzer K. N. Expression and function of the uvsW gene of bacteriophage T4. J Mol Biol. 1990 Aug 5;214(3):643–656. doi: 10.1016/0022-2836(90)90283-R. [DOI] [PubMed] [Google Scholar]
  12. Dodson L. A., Masker W. E. Inducible reactivation of bacteriophage T7 damaged by methyl methanesulfonate or UV light. J Bacteriol. 1983 Oct;156(1):13–18. doi: 10.1128/jb.156.1.13-18.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Engman H. W., Kreuzer K. N. Deletion of the essential gene 24 from the bacteriophage T4 genome. Gene. 1993 Jan 15;123(1):69–74. doi: 10.1016/0378-1119(93)90541-a. [DOI] [PubMed] [Google Scholar]
  14. Formosa T., Alberts B. M. DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell. 1986 Dec 5;47(5):793–806. doi: 10.1016/0092-8674(86)90522-2. [DOI] [PubMed] [Google Scholar]
  15. Gellert M. V(D)J recombination gets a break. Trends Genet. 1992 Dec;8(12):408–412. doi: 10.1016/0168-9525(92)90322-u. [DOI] [PubMed] [Google Scholar]
  16. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):401–465. doi: 10.1128/mr.58.3.401-465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kreuzer K. N., Alberts B. M. Characterization of a defective phage system for the analysis of bacteriophage T4 DNA replication origins. J Mol Biol. 1986 Mar 20;188(2):185–198. doi: 10.1016/0022-2836(86)90303-7. [DOI] [PubMed] [Google Scholar]
  18. Kreuzer K. N., Engman H. W., Yap W. Y. Tertiary initiation of replication in bacteriophage T4. Deletion of the overlapping uvsY promoter/replication origin from the phage genome. J Biol Chem. 1988 Aug 15;263(23):11348–11357. [PubMed] [Google Scholar]
  19. Kreuzer K. N., Yap W. Y., Menkens A. E., Engman H. W. Recombination-dependent replication of plasmids during bacteriophage T4 infection. J Biol Chem. 1988 Aug 15;263(23):11366–11373. [PubMed] [Google Scholar]
  20. Luria S. E. Reactivation of Irradiated Bacteriophage by Transfer of Self-Reproducing Units. Proc Natl Acad Sci U S A. 1947 Sep;33(9):253–264. doi: 10.1073/pnas.33.9.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Magee T. R., Asai T., Malka D., Kogoma T. DNA damage-inducible origins of DNA replication in Escherichia coli. EMBO J. 1992 Nov;11(11):4219–4225. doi: 10.1002/j.1460-2075.1992.tb05516.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Menkens A. E., Kreuzer K. N. Deletion analysis of bacteriophage T4 tertiary origins. A promoter sequence is required for a rifampicin-resistant replication origin. J Biol Chem. 1988 Aug 15;263(23):11358–11365. [PubMed] [Google Scholar]
  23. Mickelson C., Wiberg J. S. Membrane-associated DNase activity controlled by genes 46 and 47 of bacteriophage T4D and elevated DNase activity associated with the T4 das mutation. J Virol. 1981 Oct;40(1):65–77. doi: 10.1128/jvi.40.1.65-77.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morrical S. W., Hempstead K., Morrical M. D. The gene 59 protein of bacteriophage T4 modulates the intrinsic and single-stranded DNA-stimulated ATPase activities of gene 41 protein, the T4 replicative DNA helicase. J Biol Chem. 1994 Dec 30;269(52):33069–33081. [PubMed] [Google Scholar]
  25. Oliphant A. R., Nussbaum A. L., Struhl K. Cloning of random-sequence oligodeoxynucleotides. Gene. 1986;44(2-3):177–183. doi: 10.1016/0378-1119(86)90180-0. [DOI] [PubMed] [Google Scholar]
  26. Resnick M. A. The repair of double-strand breaks in DNA; a model involving recombination. J Theor Biol. 1976 Jun;59(1):97–106. doi: 10.1016/s0022-5193(76)80025-2. [DOI] [PubMed] [Google Scholar]
  27. Selick H. E., Kreuzer K. N., Alberts B. M. The bacteriophage T4 insertion/substitution vector system. A method for introducing site-specific mutations into the virus chromosome. J Biol Chem. 1988 Aug 15;263(23):11336–11347. [PubMed] [Google Scholar]
  28. Smith G. R. Conjugational recombination in E. coli: myths and mechanisms. Cell. 1991 Jan 11;64(1):19–27. doi: 10.1016/0092-8674(91)90205-d. [DOI] [PubMed] [Google Scholar]
  29. Stahl F. W. The Holliday junction on its thirtieth anniversary. Genetics. 1994 Oct;138(2):241–246. doi: 10.1093/genetics/138.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  31. Thaler D. S., Stahl F. W. DNA double-chain breaks in recombination of phage lambda and of yeast. Annu Rev Genet. 1988;22:169–197. doi: 10.1146/annurev.ge.22.120188.001125. [DOI] [PubMed] [Google Scholar]
  32. Watson J. D. Origin of concatemeric T7 DNA. Nat New Biol. 1972 Oct 18;239(94):197–201. doi: 10.1038/newbio239197a0. [DOI] [PubMed] [Google Scholar]
  33. Woodworth D. L., Kreuzer K. N. A system of transposon mutagenesis for bacteriophage T4. Mol Microbiol. 1992 May;6(10):1289–1296. doi: 10.1111/j.1365-2958.1992.tb00850.x. [DOI] [PubMed] [Google Scholar]
  34. Yap W. Y., Kreuzer K. N. Recombination hotspots in bacteriophage T4 are dependent on replication origins. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6043–6047. doi: 10.1073/pnas.88.14.6043. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES