Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Dec;177(23):6861–6865. doi: 10.1128/jb.177.23.6861-6865.1995

Construction and characterization of a fimZ mutant of Salmonella typhimurium.

K S Yeh 1, L S Hancox 1, S Clegg 1
PMCID: PMC177554  PMID: 7592479

Abstract

The Salmonella typhimurium fimA gene is controlled by several ancillary fim genes. One of these genes, fimZ, appears to be involved in increasing the expression of fimA. A fimZ mutant of S. typhimurium was constructed by allelic exchange, and this mutant was found to be nonfimbriate. The fimZ mutant demonstrated decreased levels of fimA expression compared with the parental strain when both were grown under conditions favoring fimbrial expression. An examination of the predicted amino acid sequence, deduced from the nucleotide sequence of fimZ, indicated that the FimZ polypeptide possessed a DNA binding motif. Bacterial lysates, derived from strains transformed with recombinant plasmids possessing a fimZ gene, demonstrated DNA binding activity with a fragment containing the fimA promoter. Lysates without a FimZ polypeptide did not exhibit any binding activity. These data are consistent with FimZ being a transcriptional activator of fimA, and FimZ acts by binding to the promoter region.

Full Text

The Full Text of this article is available as a PDF (262.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blyn L. B., Braaten B. A., Low D. A. Regulation of pap pilin phase variation by a mechanism involving differential dam methylation states. EMBO J. 1990 Dec;9(12):4045–4054. doi: 10.1002/j.1460-2075.1990.tb07626.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bullas L. R., Ryu J. I. Salmonella typhimurium LT2 strains which are r- m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol. 1983 Oct;156(1):471–474. doi: 10.1128/jb.156.1.471-474.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caron J., Coffield L. M., Scott J. R. A plasmid-encoded regulatory gene, rns, required for expression of the CS1 and CS2 adhesins of enterotoxigenic Escherichia coli. Proc Natl Acad Sci U S A. 1989 Feb;86(3):963–967. doi: 10.1073/pnas.86.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dorman C. J., Higgins C. F. Fimbrial phase variation in Escherichia coli: dependence on integration host factor and homologies with other site-specific recombinases. J Bacteriol. 1987 Aug;169(8):3840–3843. doi: 10.1128/jb.169.8.3840-3843.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duguid J. P., Campbell I. Antigens of the type-1 fimbriae of salmonellae and other enterobacteria. J Med Microbiol. 1969 Nov 4;2(4):535–553. doi: 10.1099/00222615-2-4-535. [DOI] [PubMed] [Google Scholar]
  6. Fried M., Crothers D. M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Dec 11;9(23):6505–6525. doi: 10.1093/nar/9.23.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gally D. L., Rucker T. J., Blomfield I. C. The leucine-responsive regulatory protein binds to the fim switch to control phase variation of type 1 fimbrial expression in Escherichia coli K-12. J Bacteriol. 1994 Sep;176(18):5665–5672. doi: 10.1128/jb.176.18.5665-5672.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garner M. M., Revzin A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 1981 Jul 10;9(13):3047–3060. doi: 10.1093/nar/9.13.3047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gerlach G. F., Allen B. L., Clegg S. Type 3 fimbriae among enterobacteria and the ability of spermidine to inhibit MR/K hemagglutination. Infect Immun. 1989 Jan;57(1):219–224. doi: 10.1128/iai.57.1.219-224.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gerlach G. F., Clegg S., Ness N. J., Swenson D. L., Allen B. L., Nichols W. A. Expression of type 1 fimbriae and mannose-sensitive hemagglutinin by recombinant plasmids. Infect Immun. 1989 Mar;57(3):764–770. doi: 10.1128/iai.57.3.764-770.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kawula T. H., Orndorff P. E. Rapid site-specific DNA inversion in Escherichia coli mutants lacking the histonelike protein H-NS. J Bacteriol. 1991 Jul;173(13):4116–4123. doi: 10.1128/jb.173.13.4116-4123.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klemm P. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J. 1986 Jun;5(6):1389–1393. doi: 10.1002/j.1460-2075.1986.tb04372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McClain M. S., Blomfield I. C., Eberhardt K. J., Eisenstein B. I. Inversion-independent phase variation of type 1 fimbriae in Escherichia coli. J Bacteriol. 1993 Jul;175(14):4335–4344. doi: 10.1128/jb.175.14.4335-4344.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miller V. L., Mekalanos J. J. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol. 1988 Jun;170(6):2575–2583. doi: 10.1128/jb.170.6.2575-2583.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Muramatsu S., Mizuno T. Nucleotide sequence of the region encompassing the int gene of a cryptic prophage and the dna Y gene flanked by a curved DNA sequence of Escherichia coli K12. Mol Gen Genet. 1990 Jan;220(2):325–328. doi: 10.1007/BF00260503. [DOI] [PubMed] [Google Scholar]
  16. Old D. C., Corneil I., Gibson L. F., Thomson A. D., Duguid J. P. Fimbriation, pellicle formation and the amount of growth of salmonellas in broth. J Gen Microbiol. 1968 Apr;51(1):1–16. doi: 10.1099/00221287-51-1-1. [DOI] [PubMed] [Google Scholar]
  17. Olsen P. B., Klemm P. Localization of promoters in the fim gene cluster and the effect of H-NS on the transcription of fimB and fimE. FEMS Microbiol Lett. 1994 Feb 1;116(1):95–100. doi: 10.1111/j.1574-6968.1994.tb06681.x. [DOI] [PubMed] [Google Scholar]
  18. Swenson D. L., Clegg S. Identification of ancillary fim genes affecting fimA expression in Salmonella typhimurium. J Bacteriol. 1992 Dec;174(23):7697–7704. doi: 10.1128/jb.174.23.7697-7704.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Swenson D. L., Clegg S., Old D. C. The frequency of fim genes among Salmonella serovars. Microb Pathog. 1991 Jun;10(6):487–492. doi: 10.1016/0882-4010(91)90115-q. [DOI] [PubMed] [Google Scholar]
  20. Swenson D. L., Kim K. J., Six E. W., Clegg S. The gene fimU affects expression of Salmonella typhimurium type 1 fimbriae and is related to the Escherichia coli tRNA gene argU. Mol Gen Genet. 1994 Jul 25;244(2):216–218. doi: 10.1007/BF00283525. [DOI] [PubMed] [Google Scholar]
  21. Tavendale A., Jardine C. K., Old D. C., Duguid J. P. Haemagglutinins and adhesion of Salmonella typhimurium to HEp2 and HeLa cells. J Med Microbiol. 1983 Aug;16(3):371–380. doi: 10.1099/00222615-16-3-371. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES