Abstract
A Pseudomonas aeruginosa mutant, defective in taxis toward L-serine but responsive to peptone, was selected by the swarm plate method after N-methyl-N'-nitrosoguanidine mutagenesis. The mutant, designated PCT1, was fully motile but failed to show chemotactic responses to glycine, L-serine, L-threonine, and L-valine. PCT1 also showed weaker responses to some other commonly occurring L-amino acids than did the wild-type strain PAO1. A chemotactic transducer gene, denoted pctA (Pseudomonas chemotactic transducer A), was cloned by phenotypic complementation of PCT1. Nucleotide sequence analysis showed that the pctA gene encodes a putative polypeptide of 629 amino acids with a calculated mass of 68,042. A hydropathy plot of the predicted polypeptide suggested that PctA may be an integral membrane protein with two potential membrane-spanning regions. The C-terminal domain of PctA showed high homology with the enteric methyl-accepting chemotaxis proteins (MCPs). The most significant amino acid sequence similarity was found in the region of MCPs referred to as the highly conserved domain. The pctA gene was inactivated by insertion of a kanamycin resistance gene cassette into the wild-type gene, resulting in the same observed deficiency in taxis toward L-amino acids as PCT1. In vivo methyl labeling experiments with L-[methyl-3H]methionine showed that this knockout mutant lacked an MCP with a molecular weight of approximately 68,000.
Full Text
The Full Text of this article is available as a PDF (322.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alm R. A., Manning P. A. Characterization of the hlyB gene and its role in the production of the El Tor haemolysin of Vibrio cholerae O1. Mol Microbiol. 1990 Mar;4(3):413–425. doi: 10.1111/j.1365-2958.1990.tb00608.x. [DOI] [PubMed] [Google Scholar]
- Armstrong J. B., Adler J., Dahl M. M. Nonchemotactic mutants of Escherichia coli. J Bacteriol. 1967 Jan;93(1):390–398. doi: 10.1128/jb.93.1.390-398.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd A., Kendall K., Simon M. I. Structure of the serine chemoreceptor in Escherichia coli. Nature. 1983 Feb 17;301(5901):623–626. doi: 10.1038/301623a0. [DOI] [PubMed] [Google Scholar]
- Craven R. C., Montie T. C. Chemotaxis of Pseudomonas aeruginosa: involvement of methylation. J Bacteriol. 1983 May;154(2):780–786. doi: 10.1128/jb.154.2.780-786.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craven R., Montie T. C. Regulation of Pseudomonas aeruginosa chemotaxis by the nitrogen source. J Bacteriol. 1985 Nov;164(2):544–549. doi: 10.1128/jb.164.2.544-549.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahl M. K., Boos W., Manson M. D. Evolution of chemotactic-signal transducers in enteric bacteria. J Bacteriol. 1989 May;171(5):2361–2371. doi: 10.1128/jb.171.5.2361-2371.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darzins A. Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol Microbiol. 1994 Jan;11(1):137–153. doi: 10.1111/j.1365-2958.1994.tb00296.x. [DOI] [PubMed] [Google Scholar]
- Emori T. G., Gaynes R. P. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev. 1993 Oct;6(4):428–442. doi: 10.1128/cmr.6.4.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Everiss K. D., Hughes K. J., Kovach M. E., Peterson K. M. The Vibrio cholerae acfB colonization determinant encodes an inner membrane protein that is related to a family of signal-transducing proteins. Infect Immun. 1994 Aug;62(8):3289–3298. doi: 10.1128/iai.62.8.3289-3298.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg J. B., Ohman D. E. Construction and characterization of Pseudomonas aeruginosa algB mutants: role of algB in high-level production of alginate. J Bacteriol. 1987 Apr;169(4):1593–1602. doi: 10.1128/jb.169.4.1593-1602.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greck M., Platzer J., Sourjik V., Schmitt R. Analysis of a chemotaxis operon in Rhizobium meliloti. Mol Microbiol. 1995 Mar;15(6):989–1000. doi: 10.1111/j.1365-2958.1995.tb02274.x. [DOI] [PubMed] [Google Scholar]
- Hanlon D. W., Ordal G. W. Cloning and characterization of genes encoding methyl-accepting chemotaxis proteins in Bacillus subtilis. J Biol Chem. 1994 May 13;269(19):14038–14046. [PubMed] [Google Scholar]
- Harkey C. W., Everiss K. D., Peterson K. M. The Vibrio cholerae toxin-coregulated-pilus gene tcpI encodes a homolog of methyl-accepting chemotaxis proteins. Infect Immun. 1994 Jul;62(7):2669–2678. doi: 10.1128/iai.62.7.2669-2678.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holloway B. W., Krishnapillai V., Morgan A. F. Chromosomal genetics of Pseudomonas. Microbiol Rev. 1979 Mar;43(1):73–102. doi: 10.1128/mr.43.1.73-102.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato J., Ito A., Nikata T., Ohtake H. Phosphate taxis in Pseudomonas aeruginosa. J Bacteriol. 1992 Aug;174(15):5149–5151. doi: 10.1128/jb.174.15.5149-5151.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato J., Sakai Y., Nikata T., Ohtake H. Cloning and characterization of a Pseudomonas aeruginosa gene involved in the negative regulation of phosphate taxis. J Bacteriol. 1994 Sep;176(18):5874–5877. doi: 10.1128/jb.176.18.5874-5877.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Liu J. D., Parkinson J. S. Genetic evidence for interaction between the CheW and Tsr proteins during chemoreceptor signaling by Escherichia coli. J Bacteriol. 1991 Aug;173(16):4941–4951. doi: 10.1128/jb.173.16.4941-4951.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masduki A., Nakamura J., Ohga T., Umezaki R., Kato J., Ohtake H. Isolation and characterization of chemotaxis mutants and genes of Pseudomonas aeruginosa. J Bacteriol. 1995 Feb;177(4):948–952. doi: 10.1128/jb.177.4.948-952.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moench T. T., Konetzka W. A. Chemotaxis in Pseudomonas aeruginosa. J Bacteriol. 1978 Jan;133(1):427–429. doi: 10.1128/jb.133.1.427-429.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moulton R. C., Montie T. C. Chemotaxis by Pseudomonas aeruginosa. J Bacteriol. 1979 Jan;137(1):274–280. doi: 10.1128/jb.137.1.274-280.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikata T., Sumida K., Kato J., Ohtake H. Rapid method for analyzing bacterial behavioral responses to chemical stimuli. Appl Environ Microbiol. 1992 Jul;58(7):2250–2254. doi: 10.1128/aem.58.7.2250-2254.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohga T., Masduki A., Kato J., Ohtake H. Chemotaxis away from thiocyanic and isothiocyanic esters in Pseudomonas aeruginosa. FEMS Microbiol Lett. 1993 Oct 1;113(1):63–66. doi: 10.1111/j.1574-6968.1993.tb06488.x. [DOI] [PubMed] [Google Scholar]
- Russo A. F., Koshland D. E., Jr Separation of signal transduction and adaptation functions of the aspartate receptor in bacterial sensing. Science. 1983 Jun 3;220(4601):1016–1020. doi: 10.1126/science.6302843. [DOI] [PubMed] [Google Scholar]
- Stock J. B., Lukat G. S., Stock A. M. Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu Rev Biophys Biophys Chem. 1991;20:109–136. doi: 10.1146/annurev.bb.20.060191.000545. [DOI] [PubMed] [Google Scholar]
- Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
- West S. E., Iglewski B. H. Codon usage in Pseudomonas aeruginosa. Nucleic Acids Res. 1988 Oct 11;16(19):9323–9335. doi: 10.1093/nar/16.19.9323. [DOI] [PMC free article] [PubMed] [Google Scholar]