Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Dec;177(24):7050–7059. doi: 10.1128/jb.177.24.7050-7059.1995

Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0.

C Schleper 1, G Puehler 1, I Holz 1, A Gambacorta 1, D Janekovic 1, U Santarius 1, H P Klenk 1, W Zillig 1
PMCID: PMC177581  PMID: 8522509

Abstract

Two species belonging to a novel genus of archaea, designated Picrophilus oshimae and Picrophilus torridus, have been isolated from two different solfataric locations in northern Japan. One habitat harboring both organisms was a dry, extremely acidic soil (pH < 0.5) that was heated by solfataric gases to about 55 degrees C. In the laboratory both species grew heterotrophically on yeast extract and poorly on tryptone under aerobic conditions at temperatures between 45 and 65 degrees C; they grew optimally at 60 degrees C. The pH optimum was 0.7, but growth occurred even around pH 0. Under optimal conditions, the generation time was about 6 h, yielding densities of up to 10(10) cells per ml. The cells were surrounded by a highly filigreed regular tetragonal S-layer, and the core lipids of the membrane were mainly bis-phytanyltetraethers. The 16S rRNA sequences of the two species were about 3% different. The complete 16S rRNA sequence of P. oshimae was 9.3% different from that of the closest relative, Thermoplasma acidophilum. The morphology and physiological properties of the two species characterize Picrophilus as a novel genus that is a member of a novel family within the order Thermoplasmales.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Darland G., Brock T. D., Samsonoff W., Conti S. F. A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science. 1970 Dec 25;170(3965):1416–1418. doi: 10.1126/science.170.3965.1416. [DOI] [PubMed] [Google Scholar]
  2. DeLong E. F., Wu K. Y., Prézelin B. B., Jovine R. V. High abundance of Archaea in Antarctic marine picoplankton. Nature. 1994 Oct 20;371(6499):695–697. doi: 10.1038/371695a0. [DOI] [PubMed] [Google Scholar]
  3. Douglas S. E., Murphy C. A., Spencer D. F., Gray M. W. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature. 1991 Mar 14;350(6314):148–151. doi: 10.1038/350148a0. [DOI] [PubMed] [Google Scholar]
  4. Krulwich T. A., Guffanti A. A. Physiology of acidophilic and alkalophilic bacteria. Adv Microb Physiol. 1983;24:173–214. doi: 10.1016/s0065-2911(08)60386-0. [DOI] [PubMed] [Google Scholar]
  5. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci. 1994 Feb;10(1):41–48. doi: 10.1093/bioinformatics/10.1.41. [DOI] [PubMed] [Google Scholar]
  6. Olsen G. J. Microbial ecology. Archaea, Archaea, everywhere. Nature. 1994 Oct 20;371(6499):657–658. doi: 10.1038/371657a0. [DOI] [PubMed] [Google Scholar]
  7. Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994 Jan;176(1):1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Peters J., Nitsch M., Kühlmorgen B., Golbik R., Lupas A., Kellermann J., Engelhardt H., Pfander J. P., Müller S., Goldie K. Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability. J Mol Biol. 1995 Jan 27;245(4):385–401. doi: 10.1006/jmbi.1994.0032. [DOI] [PubMed] [Google Scholar]
  9. Schleper C., Pühler G., Kühlmorgen B., Zillig W. Life at extremely low pH. Nature. 1995 Jun 29;375(6534):741–742. doi: 10.1038/375741b0. [DOI] [PubMed] [Google Scholar]
  10. Sletten O., Skinner C. E. Fungi Capable of Growing in Strongly Acid Media and in Concentrated Copper Sulfate Solutions. J Bacteriol. 1948 Nov;56(5):679–681. doi: 10.1128/jb.56.5.679-681.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Smith P. F., Langworthy T. A., Smith M. R. Polypeptide nature of growth requirement in yeast extract for Thermoplasma acidophilum. J Bacteriol. 1975 Nov;124(2):884–892. doi: 10.1128/jb.124.2.884-892.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Starkey R. L., Waksman S. A. Fungi Tolerant to Extreme Acidity and High Concentrations of Copper Sulfate. J Bacteriol. 1943 May;45(5):509–519. doi: 10.1128/jb.45.5.509-519.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Voss T., Melchers K., Scheirle G., Schäfer K. P. Structural comparison of recombinant pulmonary surfactant protein SP-A derived from two human coding sequences: implications for the chain composition of natural human SP-A. Am J Respir Cell Mol Biol. 1991 Jan;4(1):88–94. doi: 10.1165/ajrcmb/4.1.88. [DOI] [PubMed] [Google Scholar]
  14. Wildhaber I., Santarius U., Baumeister W. Three-dimensional structure of the surface protein of Desulfurococcus mobilis. J Bacteriol. 1987 Dec;169(12):5563–5568. doi: 10.1128/jb.169.12.5563-5568.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zillig W., Stetter K. O., Janeković D. DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Eur J Biochem. 1979 Jun 1;96(3):597–604. doi: 10.1111/j.1432-1033.1979.tb13074.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES