Abstract
The twisting and writhing during growth of single-cell filaments of Bacillus subtilis which lead to macrofiber formation was studied in both left- and right-handed forms of strains FJ7 and RHX. Filament bending, touching, and loop formation (folding), followed by winding up into a double-strand fiber, were documented. Subsequent folds that produced multistrandedness were also examined. The rate of loop rotation during winding up was measured for 26 loops from 16 clones. In most cases, the first loop formed turned at a lower rate than those produced by the following cycles of folding. The sequence of folding topologies differed in FJ7 and RHX strains and in left- versus right-handed structures. Right-handed FJ7 routinely gave rise to four-stranded helices at the second fold, whereas left-handed FJ7 and both left-handed and right-handed forms of RHX made structures with predominantly two double-stranded helical regions. Left-handed RHX structures frequently produced second folds within the initial loop itself, resulting in T- or Y-shaped fibers. Sixteen cases in which the initial touch of a filament to itself produced a loop that snapped open before it could wind up into a double-strand fiber were found. The snap motions were used to obtain estimates of the forces generated by helical growth of single filaments and to investigate theoretical models involving the material properties of cell filaments. In general, the mechanical behavior of growing single-cell filaments and fibers consisting of two-, three-, or four-strand helices was similar to that described for larger, mature, multifilament macrofibers. The behavior of multicellular macrofibers can be understood, therefore, in terms of individual cell growth.
Full Text
The Full Text of this article is available as a PDF (679.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Fein J. E. Helical growth and macrofiber formation of Bacillus subtilis 168 autolytic enzyme deficient mutants. Can J Microbiol. 1980 Mar;26(3):330–337. doi: 10.1139/m80-054. [DOI] [PubMed] [Google Scholar]
- Fein J. E., Rogers H. J. Autolytic enzyme-deficient mutants of Bacillus subtilis 168. J Bacteriol. 1976 Sep;127(3):1427–1442. doi: 10.1128/jb.127.3.1427-1442.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koch A. L. The relative rotation of the ends of Bacillus subtilis during growth. Arch Microbiol. 1990;153(6):569–573. doi: 10.1007/BF00245266. [DOI] [PubMed] [Google Scholar]
- Mendelson N. H. Bacterial macrofibres: the morphogenesis of complex multicellular bacterial forms. Sci Prog. 1990;74(296 Pt 4):425–441. [PubMed] [Google Scholar]
- Mendelson N. H. Dynamics of Bacillus subtilis helical macrofiber morphogenesis: writhing, folding, close packing, and contraction. J Bacteriol. 1982 Jul;151(1):438–449. doi: 10.1128/jb.151.1.438-449.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelson N. H., Favre D., Thwaites J. J. Twisted states of Bacillus subtilis macrofibers reflect structural states of the cell wall. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3562–3566. doi: 10.1073/pnas.81.11.3562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelson N. H. Helical Bacillus subtilis macrofibers: morphogenesis of a bacterial multicellular macroorganism. Proc Natl Acad Sci U S A. 1978 May;75(5):2478–2482. doi: 10.1073/pnas.75.5.2478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelson N. H. Helical growth of Bacillus subtilis: a new model of cell growth. Proc Natl Acad Sci U S A. 1976 May;73(5):1740–1744. doi: 10.1073/pnas.73.5.1740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelson N. H. Regulation of Bacillus subtilis macrofiber twist development by D-cycloserine. J Bacteriol. 1988 May;170(5):2336–2343. doi: 10.1128/jb.170.5.2336-2343.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thwaites J. J., Mendelson N. H. Mechanical behaviour of bacterial cell walls. Adv Microb Physiol. 1991;32:173–222. doi: 10.1016/s0065-2911(08)60008-9. [DOI] [PubMed] [Google Scholar]