Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Dec;177(24):7086–7091. doi: 10.1128/jb.177.24.7086-7091.1995

Effects of a minor isoleucyl tRNA on heterologous protein translation in Escherichia coli.

B J Del Tito Jr 1, J M Ward 1, J Hodgson 1, C J Gershater 1, H Edwards 1, L A Wysocki 1, F A Watson 1, G Sathe 1, J F Kane 1
PMCID: PMC177585  PMID: 8522513

Abstract

In Escherichia coli, the isoleucine codon AUA occurs at a frequency of about 0.4% and is the fifth rarest codon in E. coli mRNA. Since there is a correlation between the frequency of codon usage and the level of its cognate tRNA, translational problems might be expected when the mRNA contains high levels of AUA codons. When a hemagglutinin from the influenza virus, a 304-amino-acid protein with 12 (3.9%) AUA codons and 1 tandem codon, and a mupirocin-resistant isoleucyl tRNA synthetase, a 1,024-amino-acid protein, with 33 (3.2%) AUA codons and 2 tandem codons, were expressed in E. coli, product accumulation was highly variable and dependent to some degree on the growth medium. In rich medium, the flu antigen represented about 16% of total cell protein, whereas in minimal medium, it was only 2 to 3% of total cell protein. In the presence of the cloned ileX, which encodes the cognate tRNA for AUA, however, the antigen was 25 to 30% of total cell protein in cells grown in minimal medium. Alternatively, the isoleucyl tRNA synthetase did not accumulate to detectable levels in cells grown in Luria broth unless the ileX tRNA was coexpressed when it accounted for 7 to 9% of total cell protein. These results indicate that the rare isoleucine AUA codon, like the rare arginine codons AGG and AGA, can interfere with the efficient expression of cloned proteins.

Full Text

The Full Text of this article is available as a PDF (281.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bogosian G., Violand B. N., Dorward-King E. J., Workman W. E., Jung P. E., Kane J. F. Biosynthesis and incorporation into protein of norleucine by Escherichia coli. J Biol Chem. 1989 Jan 5;264(1):531–539. [PubMed] [Google Scholar]
  2. Brinkmann U., Mattes R. E., Buckel P. High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene. 1989 Dec 21;85(1):109–114. doi: 10.1016/0378-1119(89)90470-8. [DOI] [PubMed] [Google Scholar]
  3. Chalker A. F., Ward J. M., Fosberry A. P., Hodgson J. E. Analysis and toxic overexpression in Escherichia coli of a staphylococcal gene encoding isoleucyl-tRNA synthetase. Gene. 1994 Apr 8;141(1):103–108. doi: 10.1016/0378-1119(94)90135-x. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Del Tito B. J., Jr, Zabriskie D. W. A robotics application for the measurement of total soluble protein from recombinant Escherichia coli by the Lowry method. Biotechniques. 1988 Mar;6(3):230–234. [PubMed] [Google Scholar]
  6. Dyke K. G., Curnock S. P., Golding M., Noble W. C. Cloning of the gene conferring resistance to mupirocin in Staphylococcus aureus. FEMS Microbiol Lett. 1991 Jan 15;61(2-3):195–198. doi: 10.1016/0378-1097(91)90550-t. [DOI] [PubMed] [Google Scholar]
  7. Gilbart J., Perry C. R., Slocombe B. High-level mupirocin resistance in Staphylococcus aureus: evidence for two distinct isoleucyl-tRNA synthetases. Antimicrob Agents Chemother. 1993 Jan;37(1):32–38. doi: 10.1128/aac.37.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldman E., Rosenberg A. H., Zubay G., Studier F. W. Consecutive low-usage leucine codons block translation only when near the 5' end of a message in Escherichia coli. J Mol Biol. 1995 Feb 3;245(5):467–473. doi: 10.1006/jmbi.1994.0038. [DOI] [PubMed] [Google Scholar]
  9. Hughes J., Mellows G. Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochem J. 1980 Oct 1;191(1):209–219. doi: 10.1042/bj1910209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol. 1981 Feb 15;146(1):1–21. doi: 10.1016/0022-2836(81)90363-6. [DOI] [PubMed] [Google Scholar]
  11. Kane J. F., Violand B. N., Curran D. F., Staten N. R., Duffin K. L., Bogosian G. Novel in-frame two codon translational hop during synthesis of bovine placental lactogen in a recombinant strain of Escherichia coli. Nucleic Acids Res. 1992 Dec 25;20(24):6707–6712. doi: 10.1093/nar/20.24.6707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Komine Y., Adachi T., Inokuchi H., Ozeki H. Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J Mol Biol. 1990 Apr 20;212(4):579–598. doi: 10.1016/0022-2836(90)90224-A. [DOI] [PubMed] [Google Scholar]
  13. LAVER W. G. STRUCTURAL STUDIES ON THE PROTEIN SUBUNITS FROM THREE STRAINS OF INFLUENZA VIRUS. J Mol Biol. 1964 Jul;9:109–124. doi: 10.1016/s0022-2836(64)80094-2. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lindsley D., Gallant J. On the directional specificity of ribosome frameshifting at a "hungry" codon. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5469–5473. doi: 10.1073/pnas.90.12.5469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Muramatsu T., Nishikawa K., Nemoto F., Kuchino Y., Nishimura S., Miyazawa T., Yokoyama S. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature. 1988 Nov 10;336(6195):179–181. doi: 10.1038/336179a0. [DOI] [PubMed] [Google Scholar]
  17. Rojiani M. V., Jakubowski H., Goldman E. Relationship between protein synthesis and concentrations of charged and uncharged tRNATrp in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1511–1515. doi: 10.1073/pnas.87.4.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rosenberg A. H., Goldman E., Dunn J. J., Studier F. W., Zubay G. Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. J Bacteriol. 1993 Feb;175(3):716–722. doi: 10.1128/jb.175.3.716-722.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rosenberg M., Ho Y. S., Shatzman A. The use of pKc30 and its derivatives for controlled expression of genes. Methods Enzymol. 1983;101:123–138. doi: 10.1016/0076-6879(83)01009-5. [DOI] [PubMed] [Google Scholar]
  20. Sharp P. M., Li W. H. Codon usage in regulatory genes in Escherichia coli does not reflect selection for 'rare' codons. Nucleic Acids Res. 1986 Oct 10;14(19):7737–7749. doi: 10.1093/nar/14.19.7737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sipley J., Goldman E. Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2315–2319. doi: 10.1073/pnas.90.6.2315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spanjaard R. A., Chen K., Walker J. R., van Duin J. Frameshift suppression at tandem AGA and AGG codons by cloned tRNA genes: assigning a codon to argU tRNA and T4 tRNA(Arg). Nucleic Acids Res. 1990 Sep 11;18(17):5031–5036. doi: 10.1093/nar/18.17.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Spanjaard R. A., van Duin J. Translation of the sequence AGG-AGG yields 50% ribosomal frameshift. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7967–7971. doi: 10.1073/pnas.85.21.7967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sørensen M. A., Kurland C. G., Pedersen S. Codon usage determines translation rate in Escherichia coli. J Mol Biol. 1989 May 20;207(2):365–377. doi: 10.1016/0022-2836(89)90260-x. [DOI] [PubMed] [Google Scholar]
  25. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wada K., Wada Y., Ishibashi F., Gojobori T., Ikemura T. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 1992 May 11;20 (Suppl):2111–2118. doi: 10.1093/nar/20.suppl.2111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wahab S. Z., Rowley K. O., Holmes W. M. Effects of tRNA(1Leu) overproduction in Escherichia coli. Mol Microbiol. 1993 Jan;7(2):253–263. doi: 10.1111/j.1365-2958.1993.tb01116.x. [DOI] [PubMed] [Google Scholar]
  28. Yamada A., Ziese M. R., Young J. F., Yamada Y. K., Ennis F. A. Influenza virus hemagglutinin-specific cytotoxic T cell response induced by polypeptide produced in Escherichia coli. J Exp Med. 1985 Aug 1;162(2):663–674. doi: 10.1084/jem.162.2.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yamao F., Andachi Y., Muto A., Ikemura T., Osawa S. Levels of tRNAs in bacterial cells as affected by amino acid usage in proteins. Nucleic Acids Res. 1991 Nov 25;19(22):6119–6122. doi: 10.1093/nar/19.22.6119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhang S. P., Zubay G., Goldman E. Low-usage codons in Escherichia coli, yeast, fruit fly and primates. Gene. 1991 Aug 30;105(1):61–72. doi: 10.1016/0378-1119(91)90514-c. [DOI] [PubMed] [Google Scholar]
  31. Zhang S., Goldman E., Zubay G. Clustering of low usage codons and ribosome movement. J Theor Biol. 1994 Oct 21;170(4):339–354. doi: 10.1006/jtbi.1994.1196. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES