Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Dec;177(24):7119–7124. doi: 10.1128/jb.177.24.7119-7124.1995

DNA polymerase I function is required for the utilization of ethanolamine, 1,2-propanediol, and propionate by Salmonella typhimurium LT2.

M R Rondon 1, A R Horswill 1, J C Escalante-Semerena 1
PMCID: PMC177590  PMID: 8522518

Abstract

Evidence documenting the requirement for a functional DNA polymerase I when Salmonella typhimurium LT2 uses ethanolamine (EA), 1,2-propanediol (1,2-PDL), or propionate (PRP) as the sole carbon and energy source is presented. Providing rat polymerase beta in trans demonstrated that the growth phenotypes observed were due exclusively to the lack of DNA polymerase I functions. The location of the mutation (a MudI1734 insertion) that rendered cells unable to grow on EA, 1,2-PDL, or PRP was determined by DNA sequencing to be within the polA gene. polA mutants of this bacterium may be unable to repair the damage caused by reactive aldehydes generated during the catabolism of EA, 1,2-PDL, or PRP. Consistent with this hypothesis, the inhibitory effects of acetaldehyde and propionaldehyde on the growth of this polA mutant were demonstrated. A derivative of the polA mutant unable to synthesize glutathione (GSH) was markedly more sensitive to acetaldehyde and propionaldehyde than was the polA mutant proficient in GSH synthesis. This finding was in agreement with the recently proposed role of GSH as a mechanism for quenching reactive aldehydes generated during the catabolism of these compounds (M. R. Rondon, R. Kazmierczack, and J. C. Escalante-Semerena, J. Bacteriol. 177:5434-5439, 1995).

Full Text

The Full Text of this article is available as a PDF (227.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benson N. R., Goldman B. S. Rapid mapping in Salmonella typhimurium with Mud-P22 prophages. J Bacteriol. 1992 Mar;174(5):1673–1681. doi: 10.1128/jb.174.5.1673-1681.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen P., Andersson D. I., Roth J. R. The control region of the pdu/cob regulon in Salmonella typhimurium. J Bacteriol. 1994 Sep;176(17):5474–5482. doi: 10.1128/jb.176.17.5474-5482.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooper K. O., Witz G., Witmer C. M. Mutagenicity and toxicity studies of several alpha,beta-unsaturated aldehydes in the Salmonella typhimurium mutagenicity assay. Environ Mutagen. 1987;9(3):289–295. doi: 10.1002/em.2860090308. [DOI] [PubMed] [Google Scholar]
  4. De Lucia P., Cairns J. Isolation of an E. coli strain with a mutation affecting DNA polymerase. Nature. 1969 Dec 20;224(5225):1164–1166. doi: 10.1038/2241164a0. [DOI] [PubMed] [Google Scholar]
  5. Faust L. R., Connor J. A., Roof D. M., Hoch J. A., Babior B. M. Cloning, sequencing, and expression of the genes encoding the adenosylcobalamin-dependent ethanolamine ammonia-lyase of Salmonella typhimurium. J Biol Chem. 1990 Jul 25;265(21):12462–12466. [PubMed] [Google Scholar]
  6. Jeter R. M. Cobalamin-dependent 1,2-propanediol utilization by Salmonella typhimurium. J Gen Microbiol. 1990 May;136(5):887–896. doi: 10.1099/00221287-136-5-887. [DOI] [PubMed] [Google Scholar]
  7. Joyce C. M., Grindley N. D. Method for determining whether a gene of Escherichia coli is essential: application to the polA gene. J Bacteriol. 1984 May;158(2):636–643. doi: 10.1128/jb.158.2.636-643.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Joyce C. M., Kelley W. S., Grindley N. D. Nucleotide sequence of the Escherichia coli polA gene and primary structure of DNA polymerase I. J Biol Chem. 1982 Feb 25;257(4):1958–1964. [PubMed] [Google Scholar]
  9. Kingsbury D. T., Helinski D. R. DNA polymerase as a requirement for the maintenance of the bacterial plasmid colicinogenic factor E1. Biochem Biophys Res Commun. 1970 Dec 24;41(6):1538–1544. doi: 10.1016/0006-291x(70)90562-0. [DOI] [PubMed] [Google Scholar]
  10. Levin D. E., Lovely T. J., Klekowski E. Light-enhanced genetic toxicity of crystal violet. Mutat Res. 1982 Mar;103(3-6):283–288. doi: 10.1016/0165-7992(82)90055-0. [DOI] [PubMed] [Google Scholar]
  11. MacPhee D. G., Beazer M. R. Mutants of Salmonella typhimurium deficient in DNA polymerase I: further characterization and genetic analysis. Aust J Biol Sci. 1975 Dec;28(5-6):559–565. doi: 10.1071/bi9750559. [DOI] [PubMed] [Google Scholar]
  12. MacPhee D. G., Beazer M. R. Mutants of Salmonella typhimurium deficient in DNA polymerase. I. Detection by their failure to produce colicin E1. Mol Gen Genet. 1973 Dec 31;127(3):229–240. doi: 10.1007/BF00333762. [DOI] [PubMed] [Google Scholar]
  13. Marinari U. M., Ferro M., Sciaba L., Finollo R., Bassi A. M., Brambilla G. DNA-damaging activity of biotic and xenobiotic aldehydes in Chinese hamster ovary cells. Cell Biochem Funct. 1984 Oct;2(4):243–248. doi: 10.1002/cbf.290020411. [DOI] [PubMed] [Google Scholar]
  14. Marnett L. J., Hurd H. K., Hollstein M. C., Levin D. E., Esterbauer H., Ames B. N. Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. Mutat Res. 1985 Jan-Feb;148(1-2):25–34. doi: 10.1016/0027-5107(85)90204-0. [DOI] [PubMed] [Google Scholar]
  15. O'Toole G. A., Escalante-Semerena J. C. Purification and characterization of the bifunctional CobU enzyme of Salmonella typhimurium LT2. Evidence for a CobU-GMP intermediate. J Biol Chem. 1995 Oct 6;270(40):23560–23569. doi: 10.1074/jbc.270.40.23560. [DOI] [PubMed] [Google Scholar]
  16. O'Toole G. A., Trzebiatowski J. R., Escalante-Semerena J. C. The cobC gene of Salmonella typhimurium codes for a novel phosphatase involved in the assembly of the nucleotide loop of cobalamin. J Biol Chem. 1994 Oct 21;269(42):26503–26511. [PubMed] [Google Scholar]
  17. Price G. D., Howitt S. M., Harrison K., Badger M. R. Analysis of a genomic DNA region from the cyanobacterium Synechococcus sp. strain PCC7942 involved in carboxysome assembly and function. J Bacteriol. 1993 May;175(10):2871–2879. doi: 10.1128/jb.175.10.2871-2879.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Radicella J. P., Clark E. A., Chen S., Fox M. S. Patch length of localized repair events: role of DNA polymerase I in mutY-dependent mismatch repair. J Bacteriol. 1993 Dec;175(23):7732–7736. doi: 10.1128/jb.175.23.7732-7736.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rondon M. R., Escalante-Semerena J. C. The poc locus is required for 1,2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella typhimurium. J Bacteriol. 1992 Apr;174(7):2267–2272. doi: 10.1128/jb.174.7.2267-2272.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rondon M. R., Kazmierczak R., Escalante-Semerena J. C. Glutathione is required for maximal transcription of the cobalamin biosynthetic and 1,2-propanediol utilization (cob/pdu) regulon and for the catabolism of ethanolamine, 1,2-propanediol, and propionate in Salmonella typhimurium LT2. J Bacteriol. 1995 Oct;177(19):5434–5439. doi: 10.1128/jb.177.19.5434-5439.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Roof D. M., Roth J. R. Ethanolamine utilization in Salmonella typhimurium. J Bacteriol. 1988 Sep;170(9):3855–3863. doi: 10.1128/jb.170.9.3855-3863.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sanderson K. E., Hessel A., Rudd K. E. Genetic map of Salmonella typhimurium, edition VIII. Microbiol Rev. 1995 Jun;59(2):241–303. doi: 10.1128/mr.59.2.241-303.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stojiljkovic I., Bäumler A. J., Heffron F. Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol. 1995 Mar;177(5):1357–1366. doi: 10.1128/jb.177.5.1357-1366.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Suh S., Escalante-Semerena J. C. Purification and initial characterization of the ATP:corrinoid adenosyltransferase encoded by the cobA gene of Salmonella typhimurium. J Bacteriol. 1995 Feb;177(4):921–925. doi: 10.1128/jb.177.4.921-925.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sweasy J. B., Chen M., Loeb L. A. DNA polymerase beta can substitute for DNA polymerase I in the initiation of plasmid DNA replication. J Bacteriol. 1995 May;177(10):2923–2925. doi: 10.1128/jb.177.10.2923-2925.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sweasy J. B., Loeb L. A. Mammalian DNA polymerase beta can substitute for DNA polymerase I during DNA replication in Escherichia coli. J Biol Chem. 1992 Jan 25;267(3):1407–1410. [PubMed] [Google Scholar]
  28. Trzebiatowski J. R., O'Toole G. A., Escalante-Semerena J. C. The cobT gene of Salmonella typhimurium encodes the NaMN: 5,6-dimethylbenzimidazole phosphoribosyltransferase responsible for the synthesis of N1-(5-phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole, an intermediate in the synthesis of the nucleotide loop of cobalamin. J Bacteriol. 1994 Jun;176(12):3568–3575. doi: 10.1128/jb.176.12.3568-3575.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  30. Whitfield H. J., Levine G. Isolation and characterization of a mutant of Salmonella typhimurium deficient in a major deoxyribonucleic acid polymerase activity. J Bacteriol. 1973 Oct;116(1):54–58. doi: 10.1128/jb.116.1.54-58.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Youderian P., Sugiono P., Brewer K. L., Higgins N. P., Elliott T. Packaging specific segments of the Salmonella chromosome with locked-in Mud-P22 prophages. Genetics. 1988 Apr;118(4):581–592. doi: 10.1093/genetics/118.4.581. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES