Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Dec;177(24):7164–7170. doi: 10.1128/jb.177.24.7164-7170.1995

Phylogenetic analysis of phospholipase C genes from Clostridium perfringens types A to E and Clostridium novyi.

K Tsutsui 1, J Minami 1, O Matsushita 1, S Katayama 1, Y Taniguchi 1, S Nakamura 1, M Nishioka 1, A Okabe 1
PMCID: PMC177596  PMID: 8522524

Abstract

The phylogenetic interrelationships between strains of 5 toxin types (A to E) of Clostridium perfringens were examined by analysis of differences in the nucleotide sequences of phospholipase C genes (plc genes) among 10 strains, including 3 strains for which the plc gene sequences have been previously reported. A plc gene was also cloned from a Clostridium novyi type A strain and sequenced to analyze the interspecies diversity of plc genes. Phylogenetic trees constructed by the neighbor-joining method revealed that the phylogeny of C. perfringens strains is not related to toxin typing, in agreement with the results of a comparative genome mapping study by Canard et al. (B. Canard, B. Saint-Joanis, and S. T. Cole, Mol. Microbiol. 6:1421-1429, 1992). Various C. perfringens phospholipase C enzymes were purified from cultures of Escherichia coli cells into which the encoding plc genes had been cloned. All of the enzymes showed the same specific activity. On the other hand, the level of plc transcripts differed greatly (up to 40-fold) from one C. perfringens strain to another. No significant difference in the nucleotide sequence of the plc promoter region was observed for any of the plc genes. These results suggest that the variation in phospholipase C activity among different strains is not due to mutation in the plc coding region but to that in an extragenic region. The evolution of C. perfringens phospholipase C is discussed on the basis of similarities and differences between clostridial plc genes.

Full Text

The Full Text of this article is available as a PDF (290.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiba H., Adhya S., de Crombrugghe B. Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem. 1981 Nov 25;256(22):11905–11910. [PubMed] [Google Scholar]
  2. Alting-Mees M. A., Short J. M. pBluescript II: gene mapping vectors. Nucleic Acids Res. 1989 Nov 25;17(22):9494–9494. doi: 10.1093/nar/17.22.9494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Basak A. K., Stuart D. I., Nikura T., Bishop D. H., Kelly D. C., Fearn A., Titball R. W. Purification, crystallization and preliminary X-ray diffraction studies of alpha-toxin of Clostridium perfringens. J Mol Biol. 1994 Dec 16;244(5):648–650. doi: 10.1006/jmbi.1994.1758. [DOI] [PubMed] [Google Scholar]
  4. Bascuñana C. R., Mattsson J. G., Bölske G., Johansson K. E. Characterization of the 16S rRNA genes from Mycoplasma sp. strain F38 and development of an identification system based on PCR. J Bacteriol. 1994 May;176(9):2577–2586. doi: 10.1128/jb.176.9.2577-2586.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Canard B., Garnier T., Lafay B., Christen R., Cole S. T. Phylogenetic analysis of the pathogenic anaerobe Clostridium perfringens using the 16S rRNA nucleotide sequence. Int J Syst Bacteriol. 1992 Apr;42(2):312–314. doi: 10.1099/00207713-42-2-312. [DOI] [PubMed] [Google Scholar]
  6. Canard B., Saint-Joanis B., Cole S. T. Genomic diversity and organization of virulence genes in the pathogenic anaerobe Clostridium perfringens. Mol Microbiol. 1992 Jun;6(11):1421–1429. doi: 10.1111/j.1365-2958.1992.tb00862.x. [DOI] [PubMed] [Google Scholar]
  7. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol. 1994 Oct;44(4):812–826. doi: 10.1099/00207713-44-4-812. [DOI] [PubMed] [Google Scholar]
  8. East A. K., Thompson D. E., Collins M. D. Analysis of operons encoding 23S rRNA of Clostridium botulinum type A. J Bacteriol. 1992 Dec;174(24):8158–8162. doi: 10.1128/jb.174.24.8158-8162.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eklund M. W., Poysky F. T., Meyers J. A., Pelroy G. A. Interspecies conversion of Clostridium botulinum type C to Clostridium novyi type A by bacteriophage. Science. 1974 Nov 1;186(4162):456–458. doi: 10.1126/science.186.4162.456. [DOI] [PubMed] [Google Scholar]
  10. Gilmore M. S., Cruz-Rodz A. L., Leimeister-Wächter M., Kreft J., Goebel W. A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage. J Bacteriol. 1989 Feb;171(2):744–753. doi: 10.1128/jb.171.2.744-753.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hall J. D., McCroskey L. M., Pincomb B. J., Hatheway C. L. Isolation of an organism resembling Clostridium barati which produces type F botulinal toxin from an infant with botulism. J Clin Microbiol. 1985 Apr;21(4):654–655. doi: 10.1128/jcm.21.4.654-655.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hatheway C. L. Toxigenic clostridia. Clin Microbiol Rev. 1990 Jan;3(1):66–98. doi: 10.1128/cmr.3.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  14. Higgins D. G., Sharp P. M. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr;5(2):151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
  15. Hough E., Hansen L. K., Birknes B., Jynge K., Hansen S., Hordvik A., Little C., Dodson E., Derewenda Z. High-resolution (1.5 A) crystal structure of phospholipase C from Bacillus cereus. Nature. 1989 Mar 23;338(6213):357–360. doi: 10.1038/338357a0. [DOI] [PubMed] [Google Scholar]
  16. Jolivet-Reynaud C., Moreau H., Alouf J. E. Assay methods for alpha toxin from Clostridium perfringens: phospholipase C. Methods Enzymol. 1988;165:293–297. doi: 10.1016/s0076-6879(88)65044-0. [DOI] [PubMed] [Google Scholar]
  17. Katayama S., Matsushita O., Minami J., Mizobuchi S., Okabe A. Comparison of the alpha-toxin genes of Clostridium perfringens type A and C strains: evidence for extragenic regulation of transcription. Infect Immun. 1993 Feb;61(2):457–463. doi: 10.1128/iai.61.2.457-463.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mahony D. E., Moore T. I. Stable L-forms of Clostridium perfringens and their growth on glass surfaces. Can J Microbiol. 1976 Jul;22(7):953–959. doi: 10.1139/m76-138. [DOI] [PubMed] [Google Scholar]
  19. Matsushita O., Yoshihara K., Katayama S., Minami J., Okabe A. Purification and characterization of Clostridium perfringens 120-kilodalton collagenase and nucleotide sequence of the corresponding gene. J Bacteriol. 1994 Jan;176(1):149–156. doi: 10.1128/jb.176.1.149-156.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McCroskey L. M., Hatheway C. L., Fenicia L., Pasolini B., Aureli P. Characterization of an organism that produces type E botulinal toxin but which resembles Clostridium butyricum from the feces of an infant with type E botulism. J Clin Microbiol. 1986 Jan;23(1):201–202. doi: 10.1128/jcm.23.1.201-202.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nakamura S., Kimura I., Yamakawa K., Nishida S. Taxonomic relationships among Clostridium novyi Types A and B, Clostridium haemolyticum and Clostridium botulinum type C. J Gen Microbiol. 1983 May;129(5):1473–1479. doi: 10.1099/00221287-129-5-1473. [DOI] [PubMed] [Google Scholar]
  22. Ninomiya M., Matsushita O., Minami J., Sakamoto H., Nakano M., Okabe A. Role of alpha-toxin in Clostridium perfringens infection determined by using recombinants of C. perfringens and Bacillus subtilis. Infect Immun. 1994 Nov;62(11):5032–5039. doi: 10.1128/iai.62.11.5032-5039.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Okabe A., Shimizu T., Hayashi H. Cloning and sequencing of a phospholipase C gene of Clostridium perfringens. Biochem Biophys Res Commun. 1989 Apr 14;160(1):33–39. doi: 10.1016/0006-291x(89)91616-1. [DOI] [PubMed] [Google Scholar]
  24. Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994 Jan;176(1):1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rainey F. A., Ward N. L., Morgan H. W., Toalster R., Stackebrandt E. Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J Bacteriol. 1993 Aug;175(15):4772–4779. doi: 10.1128/jb.175.15.4772-4779.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Saint-Joanis B., Garnier T., Cole S. T. Gene cloning shows the alpha-toxin of Clostridium perfringens to contain both sphingomyelinase and lecithinase activities. Mol Gen Genet. 1989 Nov;219(3):453–460. doi: 10.1007/BF00259619. [DOI] [PubMed] [Google Scholar]
  27. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  28. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  29. Soda S., Yamamoto A., Ito A., Murata R. On the maintenance of toxigenicity of seed cultures of Clostridium perfringens PB6K with special reference to alpha toxin. Jpn J Med Sci Biol. 1968 Feb;21(1):91–94. doi: 10.7883/yoken1952.21.91. [DOI] [PubMed] [Google Scholar]
  30. Taguchi R., Ikezawa H. Phosphatidyl inositol-specific phospholipase C from Clostridium novyi type A. Arch Biochem Biophys. 1978 Feb;186(1):196–201. doi: 10.1016/0003-9861(78)90480-0. [DOI] [PubMed] [Google Scholar]
  31. Taguchi R., Ikezawa H. Phospholipase C from Clostridium novyi type A. I. Biochim Biophys Acta. 1975 Oct 21;409(1):75–85. doi: 10.1016/0005-2760(75)90082-x. [DOI] [PubMed] [Google Scholar]
  32. Takahashi T., Sugahara T., Ohsaka A. Purification of Clostridium perfringens phospholipase C (alpha-toxin) by affinity chromatography on agarose-linked egg-yolk lipoprotein. Biochim Biophys Acta. 1974 May 10;351(1):155–171. doi: 10.1016/0005-2795(74)90074-9. [DOI] [PubMed] [Google Scholar]
  33. Titball R. W. Bacterial phospholipases C. Microbiol Rev. 1993 Jun;57(2):347–366. doi: 10.1128/mr.57.2.347-366.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Titball R. W., Leslie D. L., Harvey S., Kelly D. Hemolytic and sphingomyelinase activities of Clostridium perfringens alpha-toxin are dependent on a domain homologous to that of an enzyme from the human arachidonic acid pathway. Infect Immun. 1991 May;59(5):1872–1874. doi: 10.1128/iai.59.5.1872-1874.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Toyonaga T., Matsushita O., Katayama S., Minami J., Okabe A. Role of the upstream region containing an intrinsic DNA curvature in the negative regulation of the phospholipase C gene of Clostridium perfringens. Microbiol Immunol. 1992;36(6):603–613. doi: 10.1111/j.1348-0421.1992.tb02060.x. [DOI] [PubMed] [Google Scholar]
  36. Tso J. Y., Siebel C. Cloning and expression of the phospholipase C gene from Clostridium perfringens and Clostridium bifermentans. Infect Immun. 1989 Feb;57(2):468–476. doi: 10.1128/iai.57.2.468-476.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vallee B. L., Auld D. S. New perspective on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. Biochemistry. 1993 Jul 6;32(26):6493–6500. doi: 10.1021/bi00077a001. [DOI] [PubMed] [Google Scholar]
  38. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yamagishi T., Yoshizawa J., Kawai M., Seo N., Nishida S. Identification of isolates of Clostridium perfringens types C and D by agglutination and fluorescent-antibody methods. Appl Microbiol. 1971 May;21(5):787–793. doi: 10.1128/am.21.5.787-793.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  41. Yoshihara K., Matsushita O., Minami J., Okabe A. Cloning and nucleotide sequence analysis of the colH gene from Clostridium histolyticum encoding a collagenase and a gelatinase. J Bacteriol. 1994 Nov;176(21):6489–6496. doi: 10.1128/jb.176.21.6489-6496.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES