Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Dec;177(24):7171–7177. doi: 10.1128/jb.177.24.7171-7177.1995

A transformation system for the yeast Candida utilis: use of a modified endogenous ribosomal protein gene as a drug-resistant marker and ribosomal DNA as an integration target for vector DNA.

K Kondo 1, T Saito 1, S Kajiwara 1, M Takagi 1, N Misawa 1
PMCID: PMC177597  PMID: 8522525

Abstract

We have developed a transformation system for the yeast Candida utilis. A novel strategy was applied to construct the transformation system, since auxotrophic mutants which could be used as hosts for transformation are not available. A gene encoding the ribosomal protein L41 was cloned from C. utilis, which is sensitive to cycloheximide, and used as a marker gene conferring cycloheximide resistance after modification of its amino acid sequence. The marker gene was constructed by substitution of the proline codon at position 56 with the glutamine codon by in vitro mutagenesis, as it had been reported previously that the 56th amino acid residue of L41 is responsible for the cycloheximide sensitivity of various organisms (S. Kawai, S. Murao, M. Mochizuki, I. Shibuya, K. Yano, and M. Takagi, J. Bacteriol. 174:254-262 1992). The ribosomal DNA (i.e., DNA coding for rRNA) of C. utilis was also cloned and used as a multiple-copy target for the integration of vector DNA into the genome, which resulted in a high transformation efficiency. Transformants were obtained by electroporation with a maximum efficiency of approximately 1,400 transformants per 1 microgram of linearized DNA carrying the gene for cycloheximide resistance and part of the ribosomal DNA. No transformants were obtained with intact plasmids. Multiple copies of the linearized plasmid were integrated into the host chromosome by homologous recombination. Southern analysis of the transformants in which vector DNA was integrated at the L41 gene locus indicated that there are two copies of gene for the L41 protein per cell, suggesting that C. utilis is diploid. Transformants were obtained from a variety of C. utilis strains, indicating that this method is applicable to the transformation of other C. utilis strains, even though there is significant heterogeneity in chromosomal karyotypes among these strains.

Full Text

The Full Text of this article is available as a PDF (356.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker D. M., Guarente L. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 1991;194:182–187. doi: 10.1016/0076-6879(91)94015-5. [DOI] [PubMed] [Google Scholar]
  2. Boze H., Moulin G., Galzy P. Production of food and fodder yeasts. Crit Rev Biotechnol. 1992;12(1-2):65–86. doi: 10.3109/07388559209069188. [DOI] [PubMed] [Google Scholar]
  3. Costaglioli P., Meilhoc E., Masson J. M. High-efficiency electrotransformation of the yeast Schwanniomyces occidentalis. Curr Genet. 1994 Dec;27(1):26–30. doi: 10.1007/BF00326575. [DOI] [PubMed] [Google Scholar]
  4. Dehoux P., Davies J., Cannon M. Natural cycloheximide resistance in yeast. The role of ribosomal protein L41. Eur J Biochem. 1993 Apr 15;213(2):841–848. doi: 10.1111/j.1432-1033.1993.tb17827.x. [DOI] [PubMed] [Google Scholar]
  5. Del Pozo L., Abarca D., Hoenicka J., Lmenez A. Two different genes from Schwanniomyces occidentalis determine ribosomal resistance to cycloheximide. Eur J Biochem. 1993 Apr 15;213(2):849–857. doi: 10.1111/j.1432-1033.1993.tb17828.x. [DOI] [PubMed] [Google Scholar]
  6. Faber K. N., Haima P., Harder W., Veenhuis M., AB G. Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr Genet. 1994 Apr;25(4):305–310. doi: 10.1007/BF00351482. [DOI] [PubMed] [Google Scholar]
  7. Fujii T., Kondo K., Shimizu F., Sone H., Tanaka J., Inoue T. Application of a ribosomal DNA integration vector in the construction of a brewer's yeast having alpha-acetolactate decarboxylase activity. Appl Environ Microbiol. 1990 Apr;56(4):997–1003. doi: 10.1128/aem.56.4.997-1003.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gritz L., Davies J. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene. 1983 Nov;25(2-3):179–188. doi: 10.1016/0378-1119(83)90223-8. [DOI] [PubMed] [Google Scholar]
  9. Kasüske A., Wedler H., Schulze S., Becher D. Efficient electropulse transformation of intact Candida maltosa cells by different homologous vector plasmids. Yeast. 1992 Sep;8(9):691–697. doi: 10.1002/yea.320080902. [DOI] [PubMed] [Google Scholar]
  10. Kawai S., Murao S., Mochizuki M., Shibuya I., Yano K., Takagi M. Drastic alteration of cycloheximide sensitivity by substitution of one amino acid in the L41 ribosomal protein of yeasts. J Bacteriol. 1992 Jan;174(1):254–262. doi: 10.1128/jb.174.1.254-262.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kondo K., Inouye M. TIP 1, a cold shock-inducible gene of Saccharomyces cerevisiae. J Biol Chem. 1991 Sep 15;266(26):17537–17544. [PubMed] [Google Scholar]
  12. Meilhoc E., Masson J. M., Teissié J. High efficiency transformation of intact yeast cells by electric field pulses. Biotechnology (N Y) 1990 Mar;8(3):223–227. doi: 10.1038/nbt0390-223. [DOI] [PubMed] [Google Scholar]
  13. Ohama T., Suzuki T., Mori M., Osawa S., Ueda T., Watanabe K., Nakase T. Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res. 1993 Aug 25;21(17):4039–4045. doi: 10.1093/nar/21.17.4039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Petes T. D. Yeast ribosomal DNA genes are located on chromosome XII. Proc Natl Acad Sci U S A. 1979 Jan;76(1):410–414. doi: 10.1073/pnas.76.1.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Philippsen P., Stotz A., Scherf C. DNA of Saccharomyces cerevisiae. Methods Enzymol. 1991;194:169–182. doi: 10.1016/0076-6879(91)94014-4. [DOI] [PubMed] [Google Scholar]
  16. Planta R. J., Raué H. A. Control of ribosome biogenesis in yeast. Trends Genet. 1988 Mar;4(3):64–68. doi: 10.1016/0168-9525(88)90042-x. [DOI] [PubMed] [Google Scholar]
  17. Rohrer T. L., Picataggio S. K. Targeted integrative transformation of Candida tropicalis by electroporation. Appl Microbiol Biotechnol. 1992 Feb;36(5):650–654. doi: 10.1007/BF00183243. [DOI] [PubMed] [Google Scholar]
  18. Sone H., Fujii T., Kondo K., Shimizu F., Tanaka J., Inoue T. Nucleotide sequence and expression of the Enterobacter aerogenes alpha-acetolactate decarboxylase gene in brewer's yeast. Appl Environ Microbiol. 1988 Jan;54(1):38–42. doi: 10.1128/aem.54.1.38-42.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  20. Stoltenburg R., Klinner U., Ritzerfeld P., Zimmermann M., Emeis C. C. Genetic diversity of the yeast Candida utilis. Curr Genet. 1992 Dec;22(6):441–446. doi: 10.1007/BF00326408. [DOI] [PubMed] [Google Scholar]
  21. Sudbery P. E. The non-Saccharomyces yeasts. Yeast. 1994 Dec;10(13):1707–1726. doi: 10.1002/yea.320101305. [DOI] [PubMed] [Google Scholar]
  22. Sugiyama H., Ohkuma M., Masuda Y., Park S. M., Ohta A., Takagi M. In vivo evidence for non-universal usage of the codon CUG in Candida maltosa. Yeast. 1995 Jan;11(1):43–52. doi: 10.1002/yea.320110106. [DOI] [PubMed] [Google Scholar]
  23. Szostak J. W., Wu R. Insertion of a genetic marker into the ribosomal DNA of yeast. Plasmid. 1979 Oct;2(4):536–554. doi: 10.1016/0147-619x(79)90053-2. [DOI] [PubMed] [Google Scholar]
  24. Warner J. R., Mitra G., Schwindinger W. F., Studeny M., Fried H. M. Saccharomyces cerevisiae coordinates accumulation of yeast ribosomal proteins by modulating mRNA splicing, translational initiation, and protein turnover. Mol Cell Biol. 1985 Jun;5(6):1512–1521. doi: 10.1128/mcb.5.6.1512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Webster T. D., Dickson R. C. Direct selection of Saccharomyces cerevisiae resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin-resistance gene of Tn903. Gene. 1983 Dec;26(2-3):243–252. doi: 10.1016/0378-1119(83)90194-4. [DOI] [PubMed] [Google Scholar]
  26. Woolford J. L., Jr Nuclear pre-mRNA splicing in yeast. Yeast. 1989 Nov-Dec;5(6):439–457. doi: 10.1002/yea.320050604. [DOI] [PubMed] [Google Scholar]
  27. Woudt L. P., Mager W. H., Beek J. G., Wassenaar G. M., Planta R. J. Structural and putative regulatory sequences of the gene encoding ribosomal protein L25 in Candida utilis. Curr Genet. 1987;12(3):193–198. doi: 10.1007/BF00436878. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES