Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Dec;177(24):7265–7270. doi: 10.1128/jb.177.24.7265-7270.1995

Characterization of Actinobacillus pleuropneumoniae riboflavin biosynthesis genes.

T E Fuller 1, M H Mulks 1
PMCID: PMC177609  PMID: 8522537

Abstract

In this paper, we report the identification, cloning, and complete nucleotide sequence of four genes from Actinobacillus pleuropneumoniae that are involved in riboflavin biosynthesis. The cloned genes can specify production of large amounts of riboflavin in Escherichia coli, can complement several defined genetic mutations in riboflavin biosynthesis in E. coli, and are homologous to riboflavin biosynthetic genes from E. coli, Haemophilus influenzae, and Bacillus subtilis. The genes have been designated A. pleuropneumoniae ribGBAH because of their similarity in both sequence and arrangement to the B. subtilis ribGBAH operon.

Full Text

The Full Text of this article is available as a PDF (306.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bresler S. E., Perumov D. A., Chernik T. P., Skvortsova A. P. Issledovanie operona biosinteza riboflavina u Bacillus subtilis. Soobshchenie XI. Opredelenie tipa reguliatsii s pomoshch'iu testa na dominantnost' operator-konstitutivnykh i reguliator-konstitutivnykh mutatsii. Genetika. 1976;12(8):124–130. [PubMed] [Google Scholar]
  2. Chikindas M. L., Morozov G. I., Mironov V. N., Luk'ianov E. V., Emel'ianov V. V. Reguliatornye oblasti operona biosinteza riboflavina Bacillus subtilis. Dokl Akad Nauk SSSR. 1988;298(4):997–1000. [PubMed] [Google Scholar]
  3. Christen A. A., Pall M. L., Manzara T., Lurquin P. F. Rapid isolation of Escherichia coli minicells by glass-fiber filtration: study of plasmid-coded polypeptides. Gene. 1983 Aug;23(2):195–198. doi: 10.1016/0378-1119(83)90051-3. [DOI] [PubMed] [Google Scholar]
  4. Fenwick B., Henry S. Porcine pleuropneumonia. J Am Vet Med Assoc. 1994 May 1;204(9):1334–1340. [PubMed] [Google Scholar]
  5. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  6. Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. doi: 10.1093/nar/11.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holmes W. M., Platt T., Rosenberg M. Termination of transcription in E. coli. Cell. 1983 Apr;32(4):1029–1032. doi: 10.1016/0092-8674(83)90287-8. [DOI] [PubMed] [Google Scholar]
  8. Hunneman W. A. Incidence, economic effects, and control of Haemophilus pleuropneumoniae infections in pigs. Vet Q. 1986 Jan;8(1):83–87. doi: 10.1080/01652176.1986.9694024. [DOI] [PubMed] [Google Scholar]
  9. Inzana T. J., Todd J., Veit H. P. Safety, stability, and efficacy of noncapsulated mutants of Actinobacillus pleuropneumoniae for use in live vaccines. Infect Immun. 1993 May;61(5):1682–1686. doi: 10.1128/iai.61.5.1682-1686.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee C. Y., Meighen E. A. The lux genes in Photobacterium leiognathi are closely linked with genes corresponding in sequence to riboflavin synthesis genes. Biochem Biophys Res Commun. 1992 Jul 31;186(2):690–697. doi: 10.1016/0006-291x(92)90802-r. [DOI] [PubMed] [Google Scholar]
  11. Lee C. Y., O'Kane D. J., Meighen E. A. Riboflavin synthesis genes are linked with the lux operon of Photobacterium phosphoreum. J Bacteriol. 1994 Apr;176(7):2100–2104. doi: 10.1128/jb.176.7.2100-2104.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mindlin S. Z., Danilevskaia O. N., Vel'kov V. V., Sokolova E. V. Geneticheskii izuchenie mutatsii, izmeniaiushchikh dominirovanie allelei chuvstvitel'nosti RNK-polimerazy Escherichia coli K-12 k rifampitsinu i streptolidiginu. Genetika. 1973 Dec;9(12):84–94. [PubMed] [Google Scholar]
  13. Mironov V. N., Chikindas M. L., Kraev A. S., Stepanov A. I., Skriabin K. G. Operonnaia organozatsiia genov biosinteza riboflavina Bacillus subtilis. Dokl Akad Nauk SSSR. 1990;312(1):237–240. [PubMed] [Google Scholar]
  14. Mironov V. N., Kraev A. S., Chernov B. K., Ul'ianov A. V., Golova Iu B. Geny biosinteza riboflavina Bacillus subtilis--polnaia pervichnaia struktura i model' organizatsii. Dokl Akad Nauk SSSR. 1989;305(2):482–487. [PubMed] [Google Scholar]
  15. Mironov V. N., Perumov D. A., Kraev A. S., Stepanov A. I., Skriabin K. G. Neobychnaia struktura reguliatornoi zony operona biosinteza riboflavina Bacillus subtilis. Mol Biol (Mosk) 1990 Jan-Feb;24(1):256–261. [PubMed] [Google Scholar]
  16. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  17. Nielsen R. Haemophilus parahaemolyticus serotypes. Pathogenicity and cross immunity. Nord Vet Med. 1979 Oct;31(10):407–413. [PubMed] [Google Scholar]
  18. Nielsen R. Haemophilus pleuropneumoniae serotypes--cross protection experiments. Nord Vet Med. 1984 Jul-Aug;36(7-8):221–234. [PubMed] [Google Scholar]
  19. Nielsen R. Pleuropneumonia of swine caused by Haemophilus parahaemolyticus. Studies on the protection obtained by vaccination. Nord Vet Med. 1976 Jul-Aug;28(7-8):337–348. [PubMed] [Google Scholar]
  20. Nielsen R. Serological and immunological studies of pleuropneumonia of swine caused by Haemophilus parahaemolyticus. Acta Vet Scand. 1974;15(1):80–89. doi: 10.1186/BF03547495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reeve J. N. Bacteriophage infection of minicells: a general method for identification of "in vivo" bacteriophage directed polypeptide biosynthesis. Mol Gen Genet. 1977 Dec 14;158(1):73–79. doi: 10.1007/BF00455121. [DOI] [PubMed] [Google Scholar]
  22. Richter G., Ritz H., Katzenmeier G., Volk R., Kohnle A., Lottspeich F., Allendorf D., Bacher A. Biosynthesis of riboflavin: cloning, sequencing, mapping, and expression of the gene coding for GTP cyclohydrolase II in Escherichia coli. J Bacteriol. 1993 Jul;175(13):4045–4051. doi: 10.1128/jb.175.13.4045-4051.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Richter G., Volk R., Krieger C., Lahm H. W., Röthlisberger U., Bacher A. Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli. J Bacteriol. 1992 Jun;174(12):4050–4056. doi: 10.1128/jb.174.12.4050-4056.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rosendal S., Carpenter D. S., Mitchell W. R., Wilson M. R. Vaccination against pleuropneumonia of pigs caused by Haemophilus pleuropneumoniae. Can Vet J. 1981 Feb;22(2):34–35. [PMC free article] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schott K., Kellermann J., Lottspeich F., Bacher A. Riboflavin synthases of Bacillus subtilis. Purification and amino acid sequence of the alpha subunit. J Biol Chem. 1990 Mar 15;265(8):4204–4209. [PubMed] [Google Scholar]
  27. Sebunya T. N., Saunders J. R. Haemophilus pleuropneumoniae infection in swine: a review. J Am Vet Med Assoc. 1983 Jun 15;182(12):1331–1337. [PubMed] [Google Scholar]
  28. Shavlovskii G. M., Logvinenko E. M. Sverkhsintez flavinov u mikroorganizmov i ego molekuliarnye mekhanizmy (obzor). Prikl Biokhim Mikrobiol. 1988 Jul-Aug;24(4):435–447. [PubMed] [Google Scholar]
  29. Swartzman E., Miyamoto C., Graham A., Meighen E. Delineation of the transcriptional boundaries of the lux operon of Vibrio harveyi demonstrates the presence of two new lux genes. J Biol Chem. 1990 Feb 25;265(6):3513–3517. [PubMed] [Google Scholar]
  30. Taura T., Ueguchi C., Shiba K., Ito K. Insertional disruption of the nusB (ssyB) gene leads to cold-sensitive growth of Escherichia coli and suppression of the secY24 mutation. Mol Gen Genet. 1992 Sep;234(3):429–432. doi: 10.1007/BF00538702. [DOI] [PubMed] [Google Scholar]
  31. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  32. WILSON A. C., PARDEE A. B. Regulation of flavin synthesis by Escherichia coli. J Gen Microbiol. 1962 Jun;28:283–303. doi: 10.1099/00221287-28-2-283. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES