Abstract
1. Estimates have been obtained by biological assay of the histamine concentration in different parts of the rabbit brain and hypophysis.
2. Mean values (ng/g) for the brain were: hypothalamus, 660; central grey matter and medial thalamus, 275; tegmental region of mid-brain, the hind-brain and caudate nucleus, 140 to 170; hippocampus and cerebral cortex, 90 to 110; cerebellum (vermis), 60.
3. The mean value (ng/g) for the anterior lobe of the hypophysis was 650; for the posterior lobe, 400.
4. In conscious rabbits, intravenous infusion of histidine in the dose range 62 to 1,500 mg/kg, raised significantly (P<0·01) the concentration of histamine in all regions of the brain examined, the pattern of distribution remaining unchanged. The largest increases occurred in the mid brain (90 to 320%) and in the hypothalamus (50 to 250%); in these areas the higher doses produced higher concentrations. Elsewhere in the brain the concentration rose in response to the lowest dose of histidine, but was not increased when higher doses were given. Concentrations in the anterior lobe of the hypophysis were unaltered.
5. The infusion of histidine, unlike that of amino acid precursors, of the monoamines, produced no obvious disturbance in the animals.
6. The rise in brain histamine after dosage with histidine persisted for several hours, depending on the dose; with 500 mg/kg, the rise was virtually unchanged after 16 hours.
7. Histamine (5 mg/kg by intravenous infusion) raised the concentration of histamine in the hypophysis but not in the brain.
8. After the infusion of DOPA, α-methyldopa or 5-hydroxytryptophan, the histamine concentration rose in the mid-brain but not in other parts of the brain.
9. These amino acids, when infused singly with histidine, did not interfere with the histidine-induced rise of brain histamine.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADAM H. M., HARDWICK D. C., SPENCER K. E. Assay of histamine on the isolated guinea-pig intestine by the method of superfusion. Br J Pharmacol Chemother. 1954 Sep;9(3):360–366. doi: 10.1111/j.1476-5381.1954.tb01693.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adam H. M., Hye H. K. Concentration of histamine in different parts of brain and hypophysis of cat and its modification by drugs. Br J Pharmacol Chemother. 1966 Oct;28(1):137–152. doi: 10.1111/j.1476-5381.1966.tb01880.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERTLER A., ROSENGREN E. On the distribution in brain of monoamines and of enzymes responsible for their formation. Experientia. 1959 Oct 15;15:382–384. doi: 10.1007/BF02158964. [DOI] [PubMed] [Google Scholar]
- BROWN D. D., TOMCHICK R., AXELROD J. The distribution and properties of a histamine-methylating enzyme. J Biol Chem. 1959 Nov;234:2948–2950. [PubMed] [Google Scholar]
- Barsoum G. S., Gaddum J. H. The pharmacological estimation of adenosine and histamine in blood. J Physiol. 1935 Aug 22;85(1):1–14. doi: 10.1113/jphysiol.1935.sp003298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brodie B. B., Comer M. S., Costa E., Dlabac A. The role of brain serotonin in the mechanism of the central action of reserpine. J Pharmacol Exp Ther. 1966 May;152(2):340–349. [PubMed] [Google Scholar]
- CARLINI E. A., GREEN J. P. The subcellular distribution of histamine, slow-reacting substance and 5-hydroxytryptamine in the brain of the rat. Br J Pharmacol Chemother. 1963 Apr;20:264–277. doi: 10.1111/j.1476-5381.1963.tb01466.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONSTANTINIDES P. Mast cells and susceptibility to experimental atherosclerosis. Science. 1953 May 8;117(3045):505–506. doi: 10.1126/science.117.3045.505. [DOI] [PubMed] [Google Scholar]
- COSTA E., APRISON M. H. Distribution of intracarotidly injected serotonin in the brain. Am J Physiol. 1958 Jan;192(1):95–100. doi: 10.1152/ajplegacy.1957.192.1.95. [DOI] [PubMed] [Google Scholar]
- COSTA E., PSCHEIDT G. R., VAN METER W. G., HIMWICH H. E. Brain concentrations of biogenic amines and EEG paterns of rabbits. J Pharmacol Exp Ther. 1960 Sep;130:81–88. [PubMed] [Google Scholar]
- COSTA E., RINALDI F. Biochemical and electroencephalographic changes in the brain of rabbits injected with 5-hydroxytryptophan (influence of chlorpromazine premedication). Am J Physiol. 1958 Jul;194(1):214–220. doi: 10.1152/ajplegacy.1958.194.1.214. [DOI] [PubMed] [Google Scholar]
- EMMELIN N. The disappearance of injected histamine from the blood stream. Acta Physiol Scand. 1951 Jun 15;22(4):379–390. [PubMed] [Google Scholar]
- GADDUM J. H. The technique of superfusion. Br J Pharmacol Chemother. 1953 Sep;8(3):321–326. doi: 10.1111/j.1476-5381.1953.tb00801.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALPERN B. N., NEVEU T., WILSON C. W. The distribution and fate of radioactive histamine in the rat. J Physiol. 1959 Oct;147:437–449. doi: 10.1113/jphysiol.1959.sp006254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOYCE D. Changes in the 5-hydroxytryptamine content of rat, rabbit and human brain after death. Br J Pharmacol Chemother. 1962 Apr;18:370–380. doi: 10.1111/j.1476-5381.1962.tb01417.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOBAYASHI Y., SCHAYER R. W. Histidine decarboxylase and histamine binding in rabbit platelets. Proc Soc Exp Biol Med. 1956 Aug-Sep;92(4):653–655. doi: 10.3181/00379727-92-22573. [DOI] [PubMed] [Google Scholar]
- LEVINE R. J., SATO T. L., SJOERDSMA A. INHIBITION OF HISTAMINE SYNTHESIS IN THE RAT BY ALPHA-HYDRAZINO ANALOG OF HISTIDINE AND 4-BROMO-3-HYDROXY BENZYLOXYAMINE. Biochem Pharmacol. 1965 Feb;14:139–149. doi: 10.1016/0006-2952(65)90069-9. [DOI] [PubMed] [Google Scholar]
- LOVENBERG W., WEISSBACH H., UDENFRIEND S. Aromatic L-amino acid decarboxylase. J Biol Chem. 1962 Jan;237:89–93. [PubMed] [Google Scholar]
- MATSUOKA M., YOSHIDA H., IMAIZUMI R. DISTRIBUTION OF CATECHOLAMINES AND THEIR METABOLITES IN RABBIT BRAIN. Biochim Biophys Acta. 1964 Feb 10;82:439–441. doi: 10.1016/0304-4165(64)90327-7. [DOI] [PubMed] [Google Scholar]
- ROCHA e SILVA M. The role played by leucocytes and platelets in anaphylactic and peptone shock. Ann N Y Acad Sci. 1950 Apr 28;50(9):1045–1067. doi: 10.1111/j.1749-6632.1950.tb39902.x. [DOI] [PubMed] [Google Scholar]
- SHORE P. A., BURKHALTER A., COHN V. H., Jr A method for the fluorometric assay of histamine in tissues. J Pharmacol Exp Ther. 1959 Nov;127:182–186. [PubMed] [Google Scholar]
- SNYDER S. H., AXELROD J. INHIBITION OF HISTAMINE METHYLATION IN VIVO BY DRUGS. Biochem Pharmacol. 1964 Mar;13:536–537. doi: 10.1016/0006-2952(64)90176-5. [DOI] [PubMed] [Google Scholar]
- SNYDER S. H., AXELROD J. TISSUE METABOLISM OF HISTAMINE -C14 IN VIVO. Fed Proc. 1965 May-Jun;24:774–776. [PubMed] [Google Scholar]
- UDENFRIEND S., WEISSBACH H., BOGDANSKI D. F. Increase in tissue serotonin following administration of its precursor 5-hydroxytryptophan. J Biol Chem. 1957 Feb;224(2):803–810. [PubMed] [Google Scholar]
- WAALKES T. P., COBURN H. Comparative effects of glycogen and antigen-antibody reactions on serotonin and histamine in the rabbit. Proc Soc Exp Biol Med. 1959 May;101(1):122–125. doi: 10.3181/00379727-101-24852. [DOI] [PubMed] [Google Scholar]
